Metamath Proof Explorer


Theorem voliccico

Description: A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses voliccico.1 φA
voliccico.2 φB
Assertion voliccico φvolAB=volAB

Proof

Step Hyp Ref Expression
1 voliccico.1 φA
2 voliccico.2 φB
3 iftrue A<BifA<BBA0=BA
4 3 adantl φABA<BifA<BBA0=BA
5 2 recnd φB
6 5 subidd φBB=0
7 6 eqcomd φ0=BB
8 7 ad2antrr φAB¬A<B0=BB
9 iffalse ¬A<BifA<BBA0=0
10 9 adantl φAB¬A<BifA<BBA0=0
11 simpll φAB¬A<Bφ
12 11 1 syl φAB¬A<BA
13 11 2 syl φAB¬A<BB
14 simpr φABAB
15 14 adantr φAB¬A<BAB
16 simpr φAB¬A<B¬A<B
17 12 13 15 16 lenlteq φAB¬A<BA=B
18 oveq2 A=BBA=BB
19 18 adantl φA=BBA=BB
20 11 17 19 syl2anc φAB¬A<BBA=BB
21 8 10 20 3eqtr4d φAB¬A<BifA<BBA0=BA
22 4 21 pm2.61dan φABifA<BBA0=BA
23 22 eqcomd φABBA=ifA<BBA0
24 1 adantr φABA
25 2 adantr φABB
26 volicc ABABvolAB=BA
27 24 25 14 26 syl3anc φABvolAB=BA
28 volico ABvolAB=ifA<BBA0
29 1 2 28 syl2anc φvolAB=ifA<BBA0
30 29 adantr φABvolAB=ifA<BBA0
31 23 27 30 3eqtr4d φABvolAB=volAB
32 simpl φ¬ABφ
33 simpr φ¬AB¬AB
34 32 2 syl φ¬ABB
35 32 1 syl φ¬ABA
36 34 35 ltnled φ¬ABB<A¬AB
37 33 36 mpbird φ¬ABB<A
38 simpr φB<AB<A
39 1 rexrd φA*
40 2 rexrd φB*
41 icc0 A*B*AB=B<A
42 39 40 41 syl2anc φAB=B<A
43 42 adantr φB<AAB=B<A
44 38 43 mpbird φB<AAB=
45 2 adantr φB<AB
46 1 adantr φB<AA
47 45 46 38 ltled φB<ABA
48 46 rexrd φB<AA*
49 45 rexrd φB<AB*
50 ico0 A*B*AB=BA
51 48 49 50 syl2anc φB<AAB=BA
52 47 51 mpbird φB<AAB=
53 44 52 eqtr4d φB<AAB=AB
54 53 fveq2d φB<AvolAB=volAB
55 32 37 54 syl2anc φ¬ABvolAB=volAB
56 31 55 pm2.61dan φvolAB=volAB