Description: A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | voliccico.1 | |
|
voliccico.2 | |
||
Assertion | voliccico | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | voliccico.1 | |
|
2 | voliccico.2 | |
|
3 | iftrue | |
|
4 | 3 | adantl | |
5 | 2 | recnd | |
6 | 5 | subidd | |
7 | 6 | eqcomd | |
8 | 7 | ad2antrr | |
9 | iffalse | |
|
10 | 9 | adantl | |
11 | simpll | |
|
12 | 11 1 | syl | |
13 | 11 2 | syl | |
14 | simpr | |
|
15 | 14 | adantr | |
16 | simpr | |
|
17 | 12 13 15 16 | lenlteq | |
18 | oveq2 | |
|
19 | 18 | adantl | |
20 | 11 17 19 | syl2anc | |
21 | 8 10 20 | 3eqtr4d | |
22 | 4 21 | pm2.61dan | |
23 | 22 | eqcomd | |
24 | 1 | adantr | |
25 | 2 | adantr | |
26 | volicc | |
|
27 | 24 25 14 26 | syl3anc | |
28 | volico | |
|
29 | 1 2 28 | syl2anc | |
30 | 29 | adantr | |
31 | 23 27 30 | 3eqtr4d | |
32 | simpl | |
|
33 | simpr | |
|
34 | 32 2 | syl | |
35 | 32 1 | syl | |
36 | 34 35 | ltnled | |
37 | 33 36 | mpbird | |
38 | simpr | |
|
39 | 1 | rexrd | |
40 | 2 | rexrd | |
41 | icc0 | |
|
42 | 39 40 41 | syl2anc | |
43 | 42 | adantr | |
44 | 38 43 | mpbird | |
45 | 2 | adantr | |
46 | 1 | adantr | |
47 | 45 46 38 | ltled | |
48 | 46 | rexrd | |
49 | 45 | rexrd | |
50 | ico0 | |
|
51 | 48 49 50 | syl2anc | |
52 | 47 51 | mpbird | |
53 | 44 52 | eqtr4d | |
54 | 53 | fveq2d | |
55 | 32 37 54 | syl2anc | |
56 | 31 55 | pm2.61dan | |