Description: If a subset B of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with n equal to 1 ). (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vonvolmbllem.a | |
|
vonvolmbllem.b | |
||
vonvolmbllem.e | |
||
vonvolmbllem.x | |
||
vonvolmbllem.y | |
||
Assertion | vonvolmbllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonvolmbllem.a | |
|
2 | vonvolmbllem.b | |
|
3 | vonvolmbllem.e | |
|
4 | vonvolmbllem.x | |
|
5 | vonvolmbllem.y | |
|
6 | nfcv | |
|
7 | 6 1 4 5 | ssmapsn | |
8 | 7 | ineq1d | |
9 | reex | |
|
10 | 9 | a1i | |
11 | 4 | sselda | |
12 | elmapi | |
|
13 | 11 12 | syl | |
14 | 13 | frnd | |
15 | 14 | ralrimiva | |
16 | iunss | |
|
17 | 15 16 | sylibr | |
18 | 5 17 | eqsstrid | |
19 | 10 18 | ssexd | |
20 | 10 2 | ssexd | |
21 | snex | |
|
22 | 21 | a1i | |
23 | 19 20 22 | inmap | |
24 | 8 23 | eqtrd | |
25 | 24 | fveq2d | |
26 | 18 | ssinss1d | |
27 | 1 26 | ovnovol | |
28 | 25 27 | eqtrd | |
29 | 7 | difeq1d | |
30 | 19 20 1 | difmapsn | |
31 | 29 30 | eqtrd | |
32 | 31 | fveq2d | |
33 | 18 | ssdifssd | |
34 | 1 33 | ovnovol | |
35 | 32 34 | eqtrd | |
36 | 28 35 | oveq12d | |
37 | 7 | fveq2d | |
38 | 1 18 | ovnovol | |
39 | 19 18 | elpwd | |
40 | fveq2 | |
|
41 | ineq1 | |
|
42 | 41 | fveq2d | |
43 | difeq1 | |
|
44 | 43 | fveq2d | |
45 | 42 44 | oveq12d | |
46 | 40 45 | eqeq12d | |
47 | 46 | rspcva | |
48 | 39 3 47 | syl2anc | |
49 | 37 38 48 | 3eqtrd | |
50 | 36 49 | eqtr4d | |