Metamath Proof Explorer


Theorem vonvolmbllem

Description: If a subset B of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with n equal to 1 ). (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvolmbllem.a φAV
vonvolmbllem.b φB
vonvolmbllem.e φy𝒫vol*y=vol*yB+𝑒vol*yB
vonvolmbllem.x φXA
vonvolmbllem.y Y=fXranf
Assertion vonvolmbllem φvoln*AXBA+𝑒voln*AXBA=voln*AX

Proof

Step Hyp Ref Expression
1 vonvolmbllem.a φAV
2 vonvolmbllem.b φB
3 vonvolmbllem.e φy𝒫vol*y=vol*yB+𝑒vol*yB
4 vonvolmbllem.x φXA
5 vonvolmbllem.y Y=fXranf
6 nfcv _fY
7 6 1 4 5 ssmapsn φX=YA
8 7 ineq1d φXBA=YABA
9 reex V
10 9 a1i φV
11 4 sselda φfXfA
12 elmapi fAf:A
13 11 12 syl φfXf:A
14 13 frnd φfXranf
15 14 ralrimiva φfXranf
16 iunss fXranffXranf
17 15 16 sylibr φfXranf
18 5 17 eqsstrid φY
19 10 18 ssexd φYV
20 10 2 ssexd φBV
21 snex AV
22 21 a1i φAV
23 19 20 22 inmap φYABA=YBA
24 8 23 eqtrd φXBA=YBA
25 24 fveq2d φvoln*AXBA=voln*AYBA
26 18 ssinss1d φYB
27 1 26 ovnovol φvoln*AYBA=vol*YB
28 25 27 eqtrd φvoln*AXBA=vol*YB
29 7 difeq1d φXBA=YABA
30 19 20 1 difmapsn φYABA=YBA
31 29 30 eqtrd φXBA=YBA
32 31 fveq2d φvoln*AXBA=voln*AYBA
33 18 ssdifssd φYB
34 1 33 ovnovol φvoln*AYBA=vol*YB
35 32 34 eqtrd φvoln*AXBA=vol*YB
36 28 35 oveq12d φvoln*AXBA+𝑒voln*AXBA=vol*YB+𝑒vol*YB
37 7 fveq2d φvoln*AX=voln*AYA
38 1 18 ovnovol φvoln*AYA=vol*Y
39 19 18 elpwd φY𝒫
40 fveq2 y=Yvol*y=vol*Y
41 ineq1 y=YyB=YB
42 41 fveq2d y=Yvol*yB=vol*YB
43 difeq1 y=YyB=YB
44 43 fveq2d y=Yvol*yB=vol*YB
45 42 44 oveq12d y=Yvol*yB+𝑒vol*yB=vol*YB+𝑒vol*YB
46 40 45 eqeq12d y=Yvol*y=vol*yB+𝑒vol*yBvol*Y=vol*YB+𝑒vol*YB
47 46 rspcva Y𝒫y𝒫vol*y=vol*yB+𝑒vol*yBvol*Y=vol*YB+𝑒vol*YB
48 39 3 47 syl2anc φvol*Y=vol*YB+𝑒vol*YB
49 37 38 48 3eqtrd φvoln*AX=vol*YB+𝑒vol*YB
50 36 49 eqtr4d φvoln*AXBA+𝑒voln*AXBA=voln*AX