Metamath Proof Explorer


Theorem vtxdginducedm1

Description: The degree of a vertex v in the induced subgraph S of a pseudograph G obtained by removing one vertex N plus the number of edges joining the vertex v and the vertex N is the degree of the vertex v in the pseudograph G . (Contributed by AV, 17-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v V=VtxG
vtxdginducedm1.e E=iEdgG
vtxdginducedm1.k K=VN
vtxdginducedm1.i I=idomE|NEi
vtxdginducedm1.p P=EI
vtxdginducedm1.s S=KP
vtxdginducedm1.j J=idomE|NEi
Assertion vtxdginducedm1 vVNVtxDegGv=VtxDegSv+𝑒lJ|vEl

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v V=VtxG
2 vtxdginducedm1.e E=iEdgG
3 vtxdginducedm1.k K=VN
4 vtxdginducedm1.i I=idomE|NEi
5 vtxdginducedm1.p P=EI
6 vtxdginducedm1.s S=KP
7 vtxdginducedm1.j J=idomE|NEi
8 7 4 elnelun JI=domE
9 8 eqcomi domE=JI
10 9 rabeqi kdomE|vEk=kJI|vEk
11 rabun2 kJI|vEk=kJ|vEkkI|vEk
12 10 11 eqtri kdomE|vEk=kJ|vEkkI|vEk
13 12 fveq2i kdomE|vEk=kJ|vEkkI|vEk
14 2 fvexi EV
15 14 dmex domEV
16 7 15 rab2ex kJ|vEkV
17 4 15 rab2ex kI|vEkV
18 ssrab2 kJ|vEkJ
19 ssrab2 kI|vEkI
20 ss2in kJ|vEkJkI|vEkIkJ|vEkkI|vEkJI
21 18 19 20 mp2an kJ|vEkkI|vEkJI
22 7 4 elneldisj JI=
23 22 sseq2i kJ|vEkkI|vEkJIkJ|vEkkI|vEk
24 ss0 kJ|vEkkI|vEkkJ|vEkkI|vEk=
25 23 24 sylbi kJ|vEkkI|vEkJIkJ|vEkkI|vEk=
26 21 25 ax-mp kJ|vEkkI|vEk=
27 hashunx kJ|vEkVkI|vEkVkJ|vEkkI|vEk=kJ|vEkkI|vEk=kJ|vEk+𝑒kI|vEk
28 16 17 26 27 mp3an kJ|vEkkI|vEk=kJ|vEk+𝑒kI|vEk
29 13 28 eqtri kdomE|vEk=kJ|vEk+𝑒kI|vEk
30 9 rabeqi kdomE|Ek=v=kJI|Ek=v
31 rabun2 kJI|Ek=v=kJ|Ek=vkI|Ek=v
32 30 31 eqtri kdomE|Ek=v=kJ|Ek=vkI|Ek=v
33 32 fveq2i kdomE|Ek=v=kJ|Ek=vkI|Ek=v
34 7 15 rab2ex kJ|Ek=vV
35 4 15 rab2ex kI|Ek=vV
36 ssrab2 kJ|Ek=vJ
37 ssrab2 kI|Ek=vI
38 ss2in kJ|Ek=vJkI|Ek=vIkJ|Ek=vkI|Ek=vJI
39 36 37 38 mp2an kJ|Ek=vkI|Ek=vJI
40 22 sseq2i kJ|Ek=vkI|Ek=vJIkJ|Ek=vkI|Ek=v
41 ss0 kJ|Ek=vkI|Ek=vkJ|Ek=vkI|Ek=v=
42 40 41 sylbi kJ|Ek=vkI|Ek=vJIkJ|Ek=vkI|Ek=v=
43 39 42 ax-mp kJ|Ek=vkI|Ek=v=
44 hashunx kJ|Ek=vVkI|Ek=vVkJ|Ek=vkI|Ek=v=kJ|Ek=vkI|Ek=v=kJ|Ek=v+𝑒kI|Ek=v
45 34 35 43 44 mp3an kJ|Ek=vkI|Ek=v=kJ|Ek=v+𝑒kI|Ek=v
46 33 45 eqtri kdomE|Ek=v=kJ|Ek=v+𝑒kI|Ek=v
47 29 46 oveq12i kdomE|vEk+𝑒kdomE|Ek=v=kJ|vEk+𝑒kI|vEk+𝑒kJ|Ek=v+𝑒kI|Ek=v
48 hashxnn0 kJ|vEkVkJ|vEk0*
49 16 48 ax-mp kJ|vEk0*
50 49 a1i vVNkJ|vEk0*
51 hashxnn0 kI|vEkVkI|vEk0*
52 17 51 ax-mp kI|vEk0*
53 52 a1i vVNkI|vEk0*
54 hashxnn0 kJ|Ek=vVkJ|Ek=v0*
55 34 54 ax-mp kJ|Ek=v0*
56 55 a1i vVNkJ|Ek=v0*
57 hashxnn0 kI|Ek=vVkI|Ek=v0*
58 35 57 ax-mp kI|Ek=v0*
59 58 a1i vVNkI|Ek=v0*
60 50 53 56 59 xnn0add4d vVNkJ|vEk+𝑒kI|vEk+𝑒kJ|Ek=v+𝑒kI|Ek=v=kJ|vEk+𝑒kJ|Ek=v+𝑒kI|vEk+𝑒kI|Ek=v
61 xnn0xaddcl kJ|vEk0*kJ|Ek=v0*kJ|vEk+𝑒kJ|Ek=v0*
62 49 55 61 mp2an kJ|vEk+𝑒kJ|Ek=v0*
63 xnn0xr kJ|vEk+𝑒kJ|Ek=v0*kJ|vEk+𝑒kJ|Ek=v*
64 62 63 ax-mp kJ|vEk+𝑒kJ|Ek=v*
65 xnn0xaddcl kI|vEk0*kI|Ek=v0*kI|vEk+𝑒kI|Ek=v0*
66 52 58 65 mp2an kI|vEk+𝑒kI|Ek=v0*
67 xnn0xr kI|vEk+𝑒kI|Ek=v0*kI|vEk+𝑒kI|Ek=v*
68 66 67 ax-mp kI|vEk+𝑒kI|Ek=v*
69 xaddcom kJ|vEk+𝑒kJ|Ek=v*kI|vEk+𝑒kI|Ek=v*kJ|vEk+𝑒kJ|Ek=v+𝑒kI|vEk+𝑒kI|Ek=v=kI|vEk+𝑒kI|Ek=v+𝑒kJ|vEk+𝑒kJ|Ek=v
70 64 68 69 mp2an kJ|vEk+𝑒kJ|Ek=v+𝑒kI|vEk+𝑒kI|Ek=v=kI|vEk+𝑒kI|Ek=v+𝑒kJ|vEk+𝑒kJ|Ek=v
71 1 2 3 4 5 6 7 vtxdginducedm1lem4 vVNkJ|Ek=v=0
72 71 oveq2d vVNkJ|vEk+𝑒kJ|Ek=v=kJ|vEk+𝑒0
73 xnn0xr kJ|vEk0*kJ|vEk*
74 49 73 ax-mp kJ|vEk*
75 xaddrid kJ|vEk*kJ|vEk+𝑒0=kJ|vEk
76 74 75 ax-mp kJ|vEk+𝑒0=kJ|vEk
77 72 76 eqtrdi vVNkJ|vEk+𝑒kJ|Ek=v=kJ|vEk
78 fveq2 k=lEk=El
79 78 eleq2d k=lvEkvEl
80 79 cbvrabv kJ|vEk=lJ|vEl
81 80 fveq2i kJ|vEk=lJ|vEl
82 77 81 eqtrdi vVNkJ|vEk+𝑒kJ|Ek=v=lJ|vEl
83 82 oveq2d vVNkI|vEk+𝑒kI|Ek=v+𝑒kJ|vEk+𝑒kJ|Ek=v=kI|vEk+𝑒kI|Ek=v+𝑒lJ|vEl
84 70 83 eqtrid vVNkJ|vEk+𝑒kJ|Ek=v+𝑒kI|vEk+𝑒kI|Ek=v=kI|vEk+𝑒kI|Ek=v+𝑒lJ|vEl
85 60 84 eqtrd vVNkJ|vEk+𝑒kI|vEk+𝑒kJ|Ek=v+𝑒kI|Ek=v=kI|vEk+𝑒kI|Ek=v+𝑒lJ|vEl
86 47 85 eqtrid vVNkdomE|vEk+𝑒kdomE|Ek=v=kI|vEk+𝑒kI|Ek=v+𝑒lJ|vEl
87 1 2 3 4 5 6 vtxdginducedm1lem2 domiEdgS=I
88 87 rabeqi kdomiEdgS|viEdgSk=kI|viEdgSk
89 1 2 3 4 5 6 vtxdginducedm1lem3 kIiEdgSk=Ek
90 89 eleq2d kIviEdgSkvEk
91 90 rabbiia kI|viEdgSk=kI|vEk
92 88 91 eqtri kdomiEdgS|viEdgSk=kI|vEk
93 92 fveq2i kdomiEdgS|viEdgSk=kI|vEk
94 87 rabeqi kdomiEdgS|iEdgSk=v=kI|iEdgSk=v
95 89 eqeq1d kIiEdgSk=vEk=v
96 95 rabbiia kI|iEdgSk=v=kI|Ek=v
97 94 96 eqtri kdomiEdgS|iEdgSk=v=kI|Ek=v
98 97 fveq2i kdomiEdgS|iEdgSk=v=kI|Ek=v
99 93 98 oveq12i kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v=kI|vEk+𝑒kI|Ek=v
100 99 eqcomi kI|vEk+𝑒kI|Ek=v=kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v
101 100 oveq1i kI|vEk+𝑒kI|Ek=v+𝑒lJ|vEl=kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v+𝑒lJ|vEl
102 86 101 eqtrdi vVNkdomE|vEk+𝑒kdomE|Ek=v=kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v+𝑒lJ|vEl
103 eldifi vVNvV
104 eqid domE=domE
105 1 2 104 vtxdgval vVVtxDegGv=kdomE|vEk+𝑒kdomE|Ek=v
106 103 105 syl vVNVtxDegGv=kdomE|vEk+𝑒kdomE|Ek=v
107 6 fveq2i VtxS=VtxKP
108 1 fvexi VV
109 difexg VVVNV
110 3 109 eqeltrid VVKV
111 108 110 ax-mp KV
112 resexg EVEIV
113 5 112 eqeltrid EVPV
114 14 113 ax-mp PV
115 111 114 opvtxfvi VtxKP=K
116 107 115 eqtri VtxS=K
117 116 eleq2i vVtxSvK
118 3 eleq2i vKvVN
119 117 118 sylbbr vVNvVtxS
120 eqid VtxS=VtxS
121 eqid iEdgS=iEdgS
122 eqid domiEdgS=domiEdgS
123 120 121 122 vtxdgval vVtxSVtxDegSv=kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v
124 119 123 syl vVNVtxDegSv=kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v
125 124 oveq1d vVNVtxDegSv+𝑒lJ|vEl=kdomiEdgS|viEdgSk+𝑒kdomiEdgS|iEdgSk=v+𝑒lJ|vEl
126 102 106 125 3eqtr4d vVNVtxDegGv=VtxDegSv+𝑒lJ|vEl
127 126 rgen vVNVtxDegGv=VtxDegSv+𝑒lJ|vEl