Description: A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of TakeutiZaring p. 31. (Contributed by NM, 17-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | wefrc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess | |
|
2 | n0 | |
|
3 | ineq2 | |
|
4 | 3 | eqeq1d | |
5 | 4 | rspcev | |
6 | 5 | ex | |
7 | 6 | adantl | |
8 | inss1 | |
|
9 | wefr | |
|
10 | vex | |
|
11 | 10 | inex2 | |
12 | 11 | epfrc | |
13 | 9 12 | syl3an1 | |
14 | 13 | 3exp | |
15 | 8 14 | mpi | |
16 | rexin | |
|
17 | 15 16 | imbitrdi | |
18 | 17 | adantr | |
19 | elin | |
|
20 | df-3an | |
|
21 | 3anrot | |
|
22 | 20 21 | bitr3i | |
23 | wetrep | |
|
24 | 23 | expd | |
25 | 22 24 | sylan2b | |
26 | 25 | exp44 | |
27 | 26 | imp | |
28 | 27 | com34 | |
29 | 28 | impd | |
30 | 19 29 | biimtrid | |
31 | 30 | imp4a | |
32 | 31 | com23 | |
33 | 32 | ralrimdv | |
34 | dfss3 | |
|
35 | 33 34 | imbitrrdi | |
36 | dfss | |
|
37 | in32 | |
|
38 | 37 | eqeq2i | |
39 | 36 38 | sylbb | |
40 | 39 | eqeq1d | |
41 | 40 | biimprd | |
42 | 35 41 | syl6 | |
43 | 42 | expd | |
44 | 43 | imp4a | |
45 | 44 | reximdvai | |
46 | 18 45 | syld | |
47 | 7 46 | pm2.61dne | |
48 | 47 | ex | |
49 | 48 | exlimdv | |
50 | 2 49 | biimtrid | |
51 | 1 50 | syl6com | |
52 | 51 | 3imp | |