| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkn0 |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3
|
upgriswlk |
|
| 5 |
|
simpr |
|
| 6 |
|
ffz0iswrd |
|
| 7 |
6
|
3ad2ant2 |
|
| 8 |
7
|
ad2antlr |
|
| 9 |
|
upgruhgr |
|
| 10 |
3
|
uhgrfun |
|
| 11 |
|
funfn |
|
| 12 |
11
|
biimpi |
|
| 13 |
9 10 12
|
3syl |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
|
wrdsymbcl |
|
| 16 |
15
|
ad4ant14 |
|
| 17 |
|
fnfvelrn |
|
| 18 |
14 16 17
|
syl2anc |
|
| 19 |
|
edgval |
|
| 20 |
18 19
|
eleqtrrdi |
|
| 21 |
|
eleq1 |
|
| 22 |
21
|
eqcoms |
|
| 23 |
20 22
|
syl5ibrcom |
|
| 24 |
23
|
ralimdva |
|
| 25 |
24
|
ex |
|
| 26 |
25
|
com23 |
|
| 27 |
26
|
3impia |
|
| 28 |
27
|
impcom |
|
| 29 |
|
lencl |
|
| 30 |
|
ffz0hash |
|
| 31 |
30
|
ex |
|
| 32 |
|
oveq1 |
|
| 33 |
|
nn0cn |
|
| 34 |
|
pncan1 |
|
| 35 |
33 34
|
syl |
|
| 36 |
32 35
|
sylan9eqr |
|
| 37 |
36
|
ex |
|
| 38 |
31 37
|
syld |
|
| 39 |
29 38
|
syl |
|
| 40 |
39
|
imp |
|
| 41 |
40
|
oveq2d |
|
| 42 |
41
|
raleqdv |
|
| 43 |
42
|
3adant3 |
|
| 44 |
43
|
adantl |
|
| 45 |
28 44
|
mpbird |
|
| 46 |
45
|
adantr |
|
| 47 |
|
eqid |
|
| 48 |
2 47
|
iswwlks |
|
| 49 |
5 8 46 48
|
syl3anbrc |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
ex |
|
| 52 |
4 51
|
sylbid |
|
| 53 |
1 52
|
mpdi |
|