Metamath Proof Explorer


Theorem wwlksnextfun

Description: Lemma for wwlksnextbij . (Contributed by Alexander van der Vekens, 7-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 27-Oct-2022)

Ref Expression
Hypotheses wwlksnextbij0.v V=VtxG
wwlksnextbij0.e E=EdgG
wwlksnextbij0.d D=wWordV|w=N+2wprefixN+1=WlastSWlastSwE
wwlksnextbij0.r R=nV|lastSWnE
wwlksnextbij0.f F=tDlastSt
Assertion wwlksnextfun N0F:DR

Proof

Step Hyp Ref Expression
1 wwlksnextbij0.v V=VtxG
2 wwlksnextbij0.e E=EdgG
3 wwlksnextbij0.d D=wWordV|w=N+2wprefixN+1=WlastSWlastSwE
4 wwlksnextbij0.r R=nV|lastSWnE
5 wwlksnextbij0.f F=tDlastSt
6 fveqeq2 w=tw=N+2t=N+2
7 oveq1 w=twprefixN+1=tprefixN+1
8 7 eqeq1d w=twprefixN+1=WtprefixN+1=W
9 fveq2 w=tlastSw=lastSt
10 9 preq2d w=tlastSWlastSw=lastSWlastSt
11 10 eleq1d w=tlastSWlastSwElastSWlastStE
12 6 8 11 3anbi123d w=tw=N+2wprefixN+1=WlastSWlastSwEt=N+2tprefixN+1=WlastSWlastStE
13 12 3 elrab2 tDtWordVt=N+2tprefixN+1=WlastSWlastStE
14 simpll tWordVN0t=N+2tWordV
15 nn0re N0N
16 2re 2
17 16 a1i N02
18 nn0ge0 N00N
19 2pos 0<2
20 19 a1i N00<2
21 15 17 18 20 addgegt0d N00<N+2
22 21 ad2antlr tWordVN0t=N+20<N+2
23 breq2 t=N+20<t0<N+2
24 23 adantl tWordVN0t=N+20<t0<N+2
25 22 24 mpbird tWordVN0t=N+20<t
26 hashgt0n0 tWordV0<tt
27 14 25 26 syl2anc tWordVN0t=N+2t
28 14 27 jca tWordVN0t=N+2tWordVt
29 28 expcom t=N+2tWordVN0tWordVt
30 29 3ad2ant1 t=N+2tprefixN+1=WlastSWlastStEtWordVN0tWordVt
31 30 expd t=N+2tprefixN+1=WlastSWlastStEtWordVN0tWordVt
32 31 impcom tWordVt=N+2tprefixN+1=WlastSWlastStEN0tWordVt
33 32 impcom N0tWordVt=N+2tprefixN+1=WlastSWlastStEtWordVt
34 lswcl tWordVtlastStV
35 33 34 syl N0tWordVt=N+2tprefixN+1=WlastSWlastStElastStV
36 simprr3 N0tWordVt=N+2tprefixN+1=WlastSWlastStElastSWlastStE
37 35 36 jca N0tWordVt=N+2tprefixN+1=WlastSWlastStElastStVlastSWlastStE
38 13 37 sylan2b N0tDlastStVlastSWlastStE
39 preq2 n=lastStlastSWn=lastSWlastSt
40 39 eleq1d n=lastStlastSWnElastSWlastStE
41 40 4 elrab2 lastStRlastStVlastSWlastStE
42 38 41 sylibr N0tDlastStR
43 42 5 fmptd N0F:DR