Description: Lemma for wwlksnextbij . (Contributed by Alexander van der Vekens, 7-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 27-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wwlksnextbij0.v | |
|
wwlksnextbij0.e | |
||
wwlksnextbij0.d | |
||
wwlksnextbij0.r | |
||
wwlksnextbij0.f | |
||
Assertion | wwlksnextfun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnextbij0.v | |
|
2 | wwlksnextbij0.e | |
|
3 | wwlksnextbij0.d | |
|
4 | wwlksnextbij0.r | |
|
5 | wwlksnextbij0.f | |
|
6 | fveqeq2 | |
|
7 | oveq1 | |
|
8 | 7 | eqeq1d | |
9 | fveq2 | |
|
10 | 9 | preq2d | |
11 | 10 | eleq1d | |
12 | 6 8 11 | 3anbi123d | |
13 | 12 3 | elrab2 | |
14 | simpll | |
|
15 | nn0re | |
|
16 | 2re | |
|
17 | 16 | a1i | |
18 | nn0ge0 | |
|
19 | 2pos | |
|
20 | 19 | a1i | |
21 | 15 17 18 20 | addgegt0d | |
22 | 21 | ad2antlr | |
23 | breq2 | |
|
24 | 23 | adantl | |
25 | 22 24 | mpbird | |
26 | hashgt0n0 | |
|
27 | 14 25 26 | syl2anc | |
28 | 14 27 | jca | |
29 | 28 | expcom | |
30 | 29 | 3ad2ant1 | |
31 | 30 | expd | |
32 | 31 | impcom | |
33 | 32 | impcom | |
34 | lswcl | |
|
35 | 33 34 | syl | |
36 | simprr3 | |
|
37 | 35 36 | jca | |
38 | 13 37 | sylan2b | |
39 | preq2 | |
|
40 | 39 | eleq1d | |
41 | 40 4 | elrab2 | |
42 | 38 41 | sylibr | |
43 | 42 5 | fmptd | |