Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xihopellsm.b | |
|
xihopellsm.h | |
||
xihopellsm.t | |
||
xihopellsm.e | |
||
xihopellsm.a | |
||
xihopellsm.u | |
||
xihopellsm.l | |
||
xihopellsm.p | |
||
xihopellsm.i | |
||
xihopellsm.k | |
||
xihopellsm.x | |
||
xihopellsm.y | |
||
Assertion | xihopellsmN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xihopellsm.b | |
|
2 | xihopellsm.h | |
|
3 | xihopellsm.t | |
|
4 | xihopellsm.e | |
|
5 | xihopellsm.a | |
|
6 | xihopellsm.u | |
|
7 | xihopellsm.l | |
|
8 | xihopellsm.p | |
|
9 | xihopellsm.i | |
|
10 | xihopellsm.k | |
|
11 | xihopellsm.x | |
|
12 | xihopellsm.y | |
|
13 | eqid | |
|
14 | 1 2 9 6 13 | dihlss | |
15 | 10 11 14 | syl2anc | |
16 | 1 2 9 6 13 | dihlss | |
17 | 10 12 16 | syl2anc | |
18 | eqid | |
|
19 | 2 6 18 13 8 | dvhopellsm | |
20 | 10 15 17 19 | syl3anc | |
21 | 10 | adantr | |
22 | 11 | adantr | |
23 | simpr | |
|
24 | 1 2 3 4 9 21 22 23 | dihopcl | |
25 | 10 | adantr | |
26 | 12 | adantr | |
27 | simpr | |
|
28 | 1 2 3 4 9 25 26 27 | dihopcl | |
29 | 24 28 | anim12dan | |
30 | 10 | adantr | |
31 | simprl | |
|
32 | simprr | |
|
33 | 2 3 4 5 6 18 | dvhopvadd2 | |
34 | 30 31 32 33 | syl3anc | |
35 | 34 | eqeq2d | |
36 | vex | |
|
37 | vex | |
|
38 | 36 37 | coex | |
39 | ovex | |
|
40 | 38 39 | opth2 | |
41 | 35 40 | bitrdi | |
42 | 29 41 | syldan | |
43 | 42 | pm5.32da | |
44 | 43 | 4exbidv | |
45 | 20 44 | bitrd | |