Metamath Proof Explorer


Theorem xihopellsmN

Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014) (New usage is discouraged.)

Ref Expression
Hypotheses xihopellsm.b B=BaseK
xihopellsm.h H=LHypK
xihopellsm.t T=LTrnKW
xihopellsm.e E=TEndoKW
xihopellsm.a A=sE,tEfTsftf
xihopellsm.u U=DVecHKW
xihopellsm.l L=LSubSpU
xihopellsm.p ˙=LSSumU
xihopellsm.i I=DIsoHKW
xihopellsm.k φKHLWH
xihopellsm.x φXB
xihopellsm.y φYB
Assertion xihopellsmN φFSIX˙IYgthugtIXhuIYF=ghS=tAu

Proof

Step Hyp Ref Expression
1 xihopellsm.b B=BaseK
2 xihopellsm.h H=LHypK
3 xihopellsm.t T=LTrnKW
4 xihopellsm.e E=TEndoKW
5 xihopellsm.a A=sE,tEfTsftf
6 xihopellsm.u U=DVecHKW
7 xihopellsm.l L=LSubSpU
8 xihopellsm.p ˙=LSSumU
9 xihopellsm.i I=DIsoHKW
10 xihopellsm.k φKHLWH
11 xihopellsm.x φXB
12 xihopellsm.y φYB
13 eqid LSubSpU=LSubSpU
14 1 2 9 6 13 dihlss KHLWHXBIXLSubSpU
15 10 11 14 syl2anc φIXLSubSpU
16 1 2 9 6 13 dihlss KHLWHYBIYLSubSpU
17 10 12 16 syl2anc φIYLSubSpU
18 eqid +U=+U
19 2 6 18 13 8 dvhopellsm KHLWHIXLSubSpUIYLSubSpUFSIX˙IYgthugtIXhuIYFS=gt+Uhu
20 10 15 17 19 syl3anc φFSIX˙IYgthugtIXhuIYFS=gt+Uhu
21 10 adantr φgtIXKHLWH
22 11 adantr φgtIXXB
23 simpr φgtIXgtIX
24 1 2 3 4 9 21 22 23 dihopcl φgtIXgTtE
25 10 adantr φhuIYKHLWH
26 12 adantr φhuIYYB
27 simpr φhuIYhuIY
28 1 2 3 4 9 25 26 27 dihopcl φhuIYhTuE
29 24 28 anim12dan φgtIXhuIYgTtEhTuE
30 10 adantr φgTtEhTuEKHLWH
31 simprl φgTtEhTuEgTtE
32 simprr φgTtEhTuEhTuE
33 2 3 4 5 6 18 dvhopvadd2 KHLWHgTtEhTuEgt+Uhu=ghtAu
34 30 31 32 33 syl3anc φgTtEhTuEgt+Uhu=ghtAu
35 34 eqeq2d φgTtEhTuEFS=gt+UhuFS=ghtAu
36 vex gV
37 vex hV
38 36 37 coex ghV
39 ovex tAuV
40 38 39 opth2 FS=ghtAuF=ghS=tAu
41 35 40 bitrdi φgTtEhTuEFS=gt+UhuF=ghS=tAu
42 29 41 syldan φgtIXhuIYFS=gt+UhuF=ghS=tAu
43 42 pm5.32da φgtIXhuIYFS=gt+UhugtIXhuIYF=ghS=tAu
44 43 4exbidv φgthugtIXhuIYFS=gt+UhugthugtIXhuIYF=ghS=tAu
45 20 44 bitrd φFSIX˙IYgthugtIXhuIYF=ghS=tAu