Metamath Proof Explorer


Theorem xppreima2

Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017)

Ref Expression
Hypotheses xppreima2.1 φF:AB
xppreima2.2 φG:AC
xppreima2.3 H=xAFxGx
Assertion xppreima2 φH-1Y×Z=F-1YG-1Z

Proof

Step Hyp Ref Expression
1 xppreima2.1 φF:AB
2 xppreima2.2 φG:AC
3 xppreima2.3 H=xAFxGx
4 3 funmpt2 FunH
5 1 ffvelcdmda φxAFxB
6 2 ffvelcdmda φxAGxC
7 opelxp FxGxB×CFxBGxC
8 5 6 7 sylanbrc φxAFxGxB×C
9 8 3 fmptd φH:AB×C
10 9 frnd φranHB×C
11 xpss B×CV×V
12 10 11 sstrdi φranHV×V
13 xppreima FunHranHV×VH-1Y×Z=1stH-1Y2ndH-1Z
14 4 12 13 sylancr φH-1Y×Z=1stH-1Y2ndH-1Z
15 fo1st 1st:VontoV
16 fofn 1st:VontoV1stFnV
17 15 16 ax-mp 1stFnV
18 opex FxGxV
19 18 3 fnmpti HFnA
20 ssv ranHV
21 fnco 1stFnVHFnAranHV1stHFnA
22 17 19 20 21 mp3an 1stHFnA
23 22 a1i φ1stHFnA
24 1 ffnd φFFnA
25 4 a1i φxAFunH
26 12 adantr φxAranHV×V
27 simpr φxAxA
28 18 3 dmmpti domH=A
29 27 28 eleqtrrdi φxAxdomH
30 opfv FunHranHV×VxdomHHx=1stHx2ndHx
31 25 26 29 30 syl21anc φxAHx=1stHx2ndHx
32 3 fvmpt2 xAFxGxB×CHx=FxGx
33 27 8 32 syl2anc φxAHx=FxGx
34 31 33 eqtr3d φxA1stHx2ndHx=FxGx
35 fvex 1stHxV
36 fvex 2ndHxV
37 35 36 opth 1stHx2ndHx=FxGx1stHx=Fx2ndHx=Gx
38 34 37 sylib φxA1stHx=Fx2ndHx=Gx
39 38 simpld φxA1stHx=Fx
40 23 24 39 eqfnfvd φ1stH=F
41 40 cnveqd φ1stH-1=F-1
42 41 imaeq1d φ1stH-1Y=F-1Y
43 fo2nd 2nd:VontoV
44 fofn 2nd:VontoV2ndFnV
45 43 44 ax-mp 2ndFnV
46 fnco 2ndFnVHFnAranHV2ndHFnA
47 45 19 20 46 mp3an 2ndHFnA
48 47 a1i φ2ndHFnA
49 2 ffnd φGFnA
50 38 simprd φxA2ndHx=Gx
51 48 49 50 eqfnfvd φ2ndH=G
52 51 cnveqd φ2ndH-1=G-1
53 52 imaeq1d φ2ndH-1Z=G-1Z
54 42 53 ineq12d φ1stH-1Y2ndH-1Z=F-1YG-1Z
55 14 54 eqtrd φH-1Y×Z=F-1YG-1Z