Metamath Proof Explorer


Theorem xpsmet

Description: The direct product of two metric spaces. Definition 14-1.5 of Gleason p. 225. (Contributed by NM, 20-Jun-2007) (Revised by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xpsds.t T=R×𝑠S
xpsds.x X=BaseR
xpsds.y Y=BaseS
xpsds.1 φRV
xpsds.2 φSW
xpsds.p P=distT
xpsds.m M=distRX×X
xpsds.n N=distSY×Y
xpsmet.3 φMMetX
xpsmet.4 φNMetY
Assertion xpsmet φPMetX×Y

Proof

Step Hyp Ref Expression
1 xpsds.t T=R×𝑠S
2 xpsds.x X=BaseR
3 xpsds.y Y=BaseS
4 xpsds.1 φRV
5 xpsds.2 φSW
6 xpsds.p P=distT
7 xpsds.m M=distRX×X
8 xpsds.n N=distSY×Y
9 xpsmet.3 φMMetX
10 xpsmet.4 φNMetY
11 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
12 eqid ScalarR=ScalarR
13 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
14 1 2 3 4 5 11 12 13 xpsval φT=xX,yYx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
15 1 2 3 4 5 11 12 13 xpsrnbas φranxX,yYx1𝑜y=BaseScalarR𝑠R1𝑜S
16 11 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
17 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
18 16 17 mp1i φxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
19 ovexd φScalarR𝑠R1𝑜SV
20 eqid distScalarR𝑠R1𝑜SranxX,yYx1𝑜y×ranxX,yYx1𝑜y=distScalarR𝑠R1𝑜SranxX,yYx1𝑜y×ranxX,yYx1𝑜y
21 eqid ScalarR𝑠k2𝑜R1𝑜Sk=ScalarR𝑠k2𝑜R1𝑜Sk
22 eqid BaseScalarR𝑠k2𝑜R1𝑜Sk=BaseScalarR𝑠k2𝑜R1𝑜Sk
23 eqid BaseR1𝑜Sk=BaseR1𝑜Sk
24 eqid distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜Sk=distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜Sk
25 eqid distScalarR𝑠k2𝑜R1𝑜Sk=distScalarR𝑠k2𝑜R1𝑜Sk
26 fvexd φScalarRV
27 2onn 2𝑜ω
28 nnfi 2𝑜ω2𝑜Fin
29 27 28 mp1i φ2𝑜Fin
30 fvexd φk2𝑜R1𝑜SkV
31 elpri k1𝑜k=k=1𝑜
32 df2o3 2𝑜=1𝑜
33 31 32 eleq2s k2𝑜k=k=1𝑜
34 9 adantr φk=MMetX
35 fveq2 k=R1𝑜Sk=R1𝑜S
36 fvpr0o RVR1𝑜S=R
37 4 36 syl φR1𝑜S=R
38 35 37 sylan9eqr φk=R1𝑜Sk=R
39 38 fveq2d φk=distR1𝑜Sk=distR
40 38 fveq2d φk=BaseR1𝑜Sk=BaseR
41 40 2 eqtr4di φk=BaseR1𝑜Sk=X
42 41 sqxpeqd φk=BaseR1𝑜Sk×BaseR1𝑜Sk=X×X
43 39 42 reseq12d φk=distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜Sk=distRX×X
44 43 7 eqtr4di φk=distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜Sk=M
45 41 fveq2d φk=MetBaseR1𝑜Sk=MetX
46 34 44 45 3eltr4d φk=distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜SkMetBaseR1𝑜Sk
47 10 adantr φk=1𝑜NMetY
48 fveq2 k=1𝑜R1𝑜Sk=R1𝑜S1𝑜
49 fvpr1o SWR1𝑜S1𝑜=S
50 5 49 syl φR1𝑜S1𝑜=S
51 48 50 sylan9eqr φk=1𝑜R1𝑜Sk=S
52 51 fveq2d φk=1𝑜distR1𝑜Sk=distS
53 51 fveq2d φk=1𝑜BaseR1𝑜Sk=BaseS
54 53 3 eqtr4di φk=1𝑜BaseR1𝑜Sk=Y
55 54 sqxpeqd φk=1𝑜BaseR1𝑜Sk×BaseR1𝑜Sk=Y×Y
56 52 55 reseq12d φk=1𝑜distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜Sk=distSY×Y
57 56 8 eqtr4di φk=1𝑜distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜Sk=N
58 54 fveq2d φk=1𝑜MetBaseR1𝑜Sk=MetY
59 47 57 58 3eltr4d φk=1𝑜distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜SkMetBaseR1𝑜Sk
60 46 59 jaodan φk=k=1𝑜distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜SkMetBaseR1𝑜Sk
61 33 60 sylan2 φk2𝑜distR1𝑜SkBaseR1𝑜Sk×BaseR1𝑜SkMetBaseR1𝑜Sk
62 21 22 23 24 25 26 29 30 61 prdsmet φdistScalarR𝑠k2𝑜R1𝑜SkMetBaseScalarR𝑠k2𝑜R1𝑜Sk
63 fnpr2o RVSWR1𝑜SFn2𝑜
64 4 5 63 syl2anc φR1𝑜SFn2𝑜
65 dffn5 R1𝑜SFn2𝑜R1𝑜S=k2𝑜R1𝑜Sk
66 64 65 sylib φR1𝑜S=k2𝑜R1𝑜Sk
67 66 oveq2d φScalarR𝑠R1𝑜S=ScalarR𝑠k2𝑜R1𝑜Sk
68 67 fveq2d φdistScalarR𝑠R1𝑜S=distScalarR𝑠k2𝑜R1𝑜Sk
69 67 fveq2d φBaseScalarR𝑠R1𝑜S=BaseScalarR𝑠k2𝑜R1𝑜Sk
70 15 69 eqtrd φranxX,yYx1𝑜y=BaseScalarR𝑠k2𝑜R1𝑜Sk
71 70 fveq2d φMetranxX,yYx1𝑜y=MetBaseScalarR𝑠k2𝑜R1𝑜Sk
72 62 68 71 3eltr4d φdistScalarR𝑠R1𝑜SMetranxX,yYx1𝑜y
73 ssid ranxX,yYx1𝑜yranxX,yYx1𝑜y
74 metres2 distScalarR𝑠R1𝑜SMetranxX,yYx1𝑜yranxX,yYx1𝑜yranxX,yYx1𝑜ydistScalarR𝑠R1𝑜SranxX,yYx1𝑜y×ranxX,yYx1𝑜yMetranxX,yYx1𝑜y
75 72 73 74 sylancl φdistScalarR𝑠R1𝑜SranxX,yYx1𝑜y×ranxX,yYx1𝑜yMetranxX,yYx1𝑜y
76 14 15 18 19 20 6 75 imasf1omet φPMetX×Y