Metamath Proof Explorer


Theorem xpsring1d

Description: The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses xpsringd.y Y=S×𝑠R
xpsringd.s φSRing
xpsringd.r φRRing
Assertion xpsring1d φ1Y=1S1R

Proof

Step Hyp Ref Expression
1 xpsringd.y Y=S×𝑠R
2 xpsringd.s φSRing
3 xpsringd.r φRRing
4 eqid mulGrpY=mulGrpY
5 eqid BaseY=BaseY
6 4 5 mgpbas BaseY=BasemulGrpY
7 eqid 1Y=1Y
8 4 7 ringidval 1Y=0mulGrpY
9 eqid Y=Y
10 4 9 mgpplusg Y=+mulGrpY
11 eqid BaseS=BaseS
12 eqid 1S=1S
13 11 12 ringidcl SRing1SBaseS
14 2 13 syl φ1SBaseS
15 eqid BaseR=BaseR
16 eqid 1R=1R
17 15 16 ringidcl RRing1RBaseR
18 3 17 syl φ1RBaseR
19 14 18 opelxpd φ1S1RBaseS×BaseR
20 1 11 15 2 3 xpsbas φBaseS×BaseR=BaseY
21 19 20 eleqtrd φ1S1RBaseY
22 20 eleq2d φxBaseS×BaseRxBaseY
23 elxp2 xBaseS×BaseRaBaseSbBaseRx=ab
24 2 adantr φaBaseSbBaseRSRing
25 3 adantr φaBaseSbBaseRRRing
26 14 adantr φaBaseSbBaseR1SBaseS
27 18 adantr φaBaseSbBaseR1RBaseR
28 simprl φaBaseSbBaseRaBaseS
29 simprr φaBaseSbBaseRbBaseR
30 eqid S=S
31 11 30 24 26 28 ringcld φaBaseSbBaseR1SSaBaseS
32 eqid R=R
33 15 32 25 27 29 ringcld φaBaseSbBaseR1RRbBaseR
34 1 11 15 24 25 26 27 28 29 31 33 30 32 9 xpsmul φaBaseSbBaseR1S1RYab=1SSa1RRb
35 simpl aBaseSbBaseRaBaseS
36 11 30 12 ringlidm SRingaBaseS1SSa=a
37 2 35 36 syl2an φaBaseSbBaseR1SSa=a
38 simpr aBaseSbBaseRbBaseR
39 15 32 16 ringlidm RRingbBaseR1RRb=b
40 3 38 39 syl2an φaBaseSbBaseR1RRb=b
41 37 40 opeq12d φaBaseSbBaseR1SSa1RRb=ab
42 34 41 eqtrd φaBaseSbBaseR1S1RYab=ab
43 oveq2 x=ab1S1RYx=1S1RYab
44 id x=abx=ab
45 43 44 eqeq12d x=ab1S1RYx=x1S1RYab=ab
46 42 45 syl5ibrcom φaBaseSbBaseRx=ab1S1RYx=x
47 46 rexlimdvva φaBaseSbBaseRx=ab1S1RYx=x
48 23 47 biimtrid φxBaseS×BaseR1S1RYx=x
49 22 48 sylbird φxBaseY1S1RYx=x
50 49 imp φxBaseY1S1RYx=x
51 11 30 24 28 26 ringcld φaBaseSbBaseRaS1SBaseS
52 15 32 25 29 27 ringcld φaBaseSbBaseRbR1RBaseR
53 1 11 15 24 25 28 29 26 27 51 52 30 32 9 xpsmul φaBaseSbBaseRabY1S1R=aS1SbR1R
54 11 30 12 ringridm SRingaBaseSaS1S=a
55 2 35 54 syl2an φaBaseSbBaseRaS1S=a
56 15 32 16 ringridm RRingbBaseRbR1R=b
57 3 38 56 syl2an φaBaseSbBaseRbR1R=b
58 55 57 opeq12d φaBaseSbBaseRaS1SbR1R=ab
59 53 58 eqtrd φaBaseSbBaseRabY1S1R=ab
60 oveq1 x=abxY1S1R=abY1S1R
61 60 44 eqeq12d x=abxY1S1R=xabY1S1R=ab
62 59 61 syl5ibrcom φaBaseSbBaseRx=abxY1S1R=x
63 62 rexlimdvva φaBaseSbBaseRx=abxY1S1R=x
64 23 63 biimtrid φxBaseS×BaseRxY1S1R=x
65 22 64 sylbird φxBaseYxY1S1R=x
66 65 imp φxBaseYxY1S1R=x
67 6 8 10 21 50 66 ismgmid2 φ1S1R=1Y
68 67 eqcomd φ1Y=1S1R