Metamath Proof Explorer


Theorem zm1nn

Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018)

Ref Expression
Assertion zm1nn N0LJ0JJ<L-N-1L1

Proof

Step Hyp Ref Expression
1 0red JN0L0
2 simpl JN0LJ
3 zre LL
4 nn0re N0N
5 resubcl LNLN
6 3 4 5 syl2anr N0LLN
7 6 adantl JN0LLN
8 peano2rem LNL-N-1
9 7 8 syl JN0LL-N-1
10 lelttr 0JL-N-10JJ<L-N-10<L-N-1
11 1 2 9 10 syl3anc JN0L0JJ<L-N-10<L-N-1
12 1red N0L1
13 12 6 posdifd N0L1<LN0<L-N-1
14 4 adantr N0LN
15 3 adantl N0LL
16 12 14 15 ltaddsubd N0L1+N<L1<LN
17 elnn0z N0N0N
18 0red NL0
19 zre NN
20 19 adantr NLN
21 1red NL1
22 18 20 21 leadd2d NL0N1+01+N
23 1re 1
24 0re 0
25 23 24 readdcli 1+0
26 25 a1i NL1+0
27 1red N1
28 27 19 readdcld N1+N
29 28 adantr NL1+N
30 3 adantl NLL
31 lelttr 1+01+NL1+01+N1+N<L1+0<L
32 26 29 30 31 syl3anc NL1+01+N1+N<L1+0<L
33 peano2zm LL1
34 33 adantl NLL1
35 34 adantr NL1+0<LL1
36 1red L1
37 0red L0
38 36 37 3 ltaddsub2d L1+0<L0<L1
39 38 biimpd L1+0<L0<L1
40 39 adantl NL1+0<L0<L1
41 40 imp NL1+0<L0<L1
42 elnnz L1L10<L1
43 35 41 42 sylanbrc NL1+0<LL1
44 43 ex NL1+0<LL1
45 32 44 syld NL1+01+N1+N<LL1
46 45 expd NL1+01+N1+N<LL1
47 22 46 sylbid NL0N1+N<LL1
48 47 impancom N0NL1+N<LL1
49 17 48 sylbi N0L1+N<LL1
50 49 imp N0L1+N<LL1
51 16 50 sylbird N0L1<LNL1
52 13 51 sylbird N0L0<L-N-1L1
53 52 adantl JN0L0<L-N-1L1
54 11 53 syld JN0L0JJ<L-N-1L1
55 54 ex JN0L0JJ<L-N-1L1
56 55 com23 J0JJ<L-N-1N0LL1
57 56 3impib J0JJ<L-N-1N0LL1
58 57 com12 N0LJ0JJ<L-N-1L1