Metamath Proof Explorer


Theorem zm1nn

Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018)

Ref Expression
Assertion zm1nn N 0 L J 0 J J < L - N - 1 L 1

Proof

Step Hyp Ref Expression
1 0red J N 0 L 0
2 simpl J N 0 L J
3 zre L L
4 nn0re N 0 N
5 resubcl L N L N
6 3 4 5 syl2anr N 0 L L N
7 6 adantl J N 0 L L N
8 peano2rem L N L - N - 1
9 7 8 syl J N 0 L L - N - 1
10 lelttr 0 J L - N - 1 0 J J < L - N - 1 0 < L - N - 1
11 1 2 9 10 syl3anc J N 0 L 0 J J < L - N - 1 0 < L - N - 1
12 1red N 0 L 1
13 12 6 posdifd N 0 L 1 < L N 0 < L - N - 1
14 4 adantr N 0 L N
15 3 adantl N 0 L L
16 12 14 15 ltaddsubd N 0 L 1 + N < L 1 < L N
17 elnn0z N 0 N 0 N
18 0red N L 0
19 zre N N
20 19 adantr N L N
21 1red N L 1
22 18 20 21 leadd2d N L 0 N 1 + 0 1 + N
23 1re 1
24 0re 0
25 23 24 readdcli 1 + 0
26 25 a1i N L 1 + 0
27 1red N 1
28 27 19 readdcld N 1 + N
29 28 adantr N L 1 + N
30 3 adantl N L L
31 lelttr 1 + 0 1 + N L 1 + 0 1 + N 1 + N < L 1 + 0 < L
32 26 29 30 31 syl3anc N L 1 + 0 1 + N 1 + N < L 1 + 0 < L
33 peano2zm L L 1
34 33 adantl N L L 1
35 34 adantr N L 1 + 0 < L L 1
36 1red L 1
37 0red L 0
38 36 37 3 ltaddsub2d L 1 + 0 < L 0 < L 1
39 38 biimpd L 1 + 0 < L 0 < L 1
40 39 adantl N L 1 + 0 < L 0 < L 1
41 40 imp N L 1 + 0 < L 0 < L 1
42 elnnz L 1 L 1 0 < L 1
43 35 41 42 sylanbrc N L 1 + 0 < L L 1
44 43 ex N L 1 + 0 < L L 1
45 32 44 syld N L 1 + 0 1 + N 1 + N < L L 1
46 45 expd N L 1 + 0 1 + N 1 + N < L L 1
47 22 46 sylbid N L 0 N 1 + N < L L 1
48 47 impancom N 0 N L 1 + N < L L 1
49 17 48 sylbi N 0 L 1 + N < L L 1
50 49 imp N 0 L 1 + N < L L 1
51 16 50 sylbird N 0 L 1 < L N L 1
52 13 51 sylbird N 0 L 0 < L - N - 1 L 1
53 52 adantl J N 0 L 0 < L - N - 1 L 1
54 11 53 syld J N 0 L 0 J J < L - N - 1 L 1
55 54 ex J N 0 L 0 J J < L - N - 1 L 1
56 55 com23 J 0 J J < L - N - 1 N 0 L L 1
57 56 3impib J 0 J J < L - N - 1 N 0 L L 1
58 57 com12 N 0 L J 0 J J < L - N - 1 L 1