| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
⊢ 𝑆 = ran ( 𝑤 ∈ ℤ[i] ↦ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
| 2 |
|
2sqlem7.2 |
⊢ 𝑌 = { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) } |
| 3 |
|
breq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∥ 𝑎 ↔ 𝐵 ∥ 𝑎 ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆 ) ) |
| 5 |
3 4
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ( 𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆 ) ) ) |
| 6 |
5
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑎 ∈ 𝑌 ( 𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = ( 1 ... 1 ) ) |
| 8 |
7
|
raleqdv |
⊢ ( 𝑚 = 1 → ( ∀ 𝑏 ∈ ( 1 ... 𝑚 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑏 ∈ ( 1 ... 1 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) |
| 10 |
9
|
raleqdv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑏 ∈ ( 1 ... 𝑚 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑛 + 1 ) ) ) |
| 12 |
11
|
raleqdv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑚 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑏 ∈ ( 1 ... ( 𝑛 + 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑚 = 𝐵 → ( 1 ... 𝑚 ) = ( 1 ... 𝐵 ) ) |
| 14 |
13
|
raleqdv |
⊢ ( 𝑚 = 𝐵 → ( ∀ 𝑏 ∈ ( 1 ... 𝑚 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑏 ∈ ( 1 ... 𝐵 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 15 |
|
elfz1eq |
⊢ ( 𝑏 ∈ ( 1 ... 1 ) → 𝑏 = 1 ) |
| 16 |
|
1z |
⊢ 1 ∈ ℤ |
| 17 |
|
zgz |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ[i] ) |
| 18 |
16 17
|
ax-mp |
⊢ 1 ∈ ℤ[i] |
| 19 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 20 |
19
|
eqcomi |
⊢ 1 = ( 1 ↑ 2 ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = ( abs ‘ 1 ) ) |
| 22 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 23 |
21 22
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = 1 ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( abs ‘ 𝑥 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 25 |
24
|
rspceeqv |
⊢ ( ( 1 ∈ ℤ[i] ∧ 1 = ( 1 ↑ 2 ) ) → ∃ 𝑥 ∈ ℤ[i] 1 = ( ( abs ‘ 𝑥 ) ↑ 2 ) ) |
| 26 |
18 20 25
|
mp2an |
⊢ ∃ 𝑥 ∈ ℤ[i] 1 = ( ( abs ‘ 𝑥 ) ↑ 2 ) |
| 27 |
1
|
2sqlem1 |
⊢ ( 1 ∈ 𝑆 ↔ ∃ 𝑥 ∈ ℤ[i] 1 = ( ( abs ‘ 𝑥 ) ↑ 2 ) ) |
| 28 |
26 27
|
mpbir |
⊢ 1 ∈ 𝑆 |
| 29 |
15 28
|
eqeltrdi |
⊢ ( 𝑏 ∈ ( 1 ... 1 ) → 𝑏 ∈ 𝑆 ) |
| 30 |
29
|
a1d |
⊢ ( 𝑏 ∈ ( 1 ... 1 ) → ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 31 |
30
|
ralrimivw |
⊢ ( 𝑏 ∈ ( 1 ... 1 ) → ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 32 |
31
|
rgen |
⊢ ∀ 𝑏 ∈ ( 1 ... 1 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) |
| 33 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 34 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → 𝑛 ∈ ℂ ) |
| 36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 37 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 38 |
35 36 37
|
sylancl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) = ( 1 ... 𝑛 ) ) |
| 40 |
33 39
|
raleqtrrdv |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ∀ 𝑏 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 41 |
|
simprr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ( 𝑛 + 1 ) ∥ 𝑚 ) |
| 42 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 44 |
|
simprl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → 𝑚 ∈ 𝑌 ) |
| 45 |
1 2 40 41 43 44
|
2sqlem9 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ 𝑌 ∧ ( 𝑛 + 1 ) ∥ 𝑚 ) ) → ( 𝑛 + 1 ) ∈ 𝑆 ) |
| 46 |
45
|
expr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ∧ 𝑚 ∈ 𝑌 ) → ( ( 𝑛 + 1 ) ∥ 𝑚 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) → ∀ 𝑚 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑚 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) |
| 48 |
47
|
ex |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) → ∀ 𝑚 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑚 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) ) |
| 49 |
|
breq2 |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑛 + 1 ) ∥ 𝑎 ↔ ( 𝑛 + 1 ) ∥ 𝑚 ) ) |
| 50 |
49
|
imbi1d |
⊢ ( 𝑎 = 𝑚 → ( ( ( 𝑛 + 1 ) ∥ 𝑎 → ( 𝑛 + 1 ) ∈ 𝑆 ) ↔ ( ( 𝑛 + 1 ) ∥ 𝑚 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) ) |
| 51 |
50
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑎 → ( 𝑛 + 1 ) ∈ 𝑆 ) ↔ ∀ 𝑚 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑚 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) |
| 52 |
48 51
|
imbitrrdi |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) → ∀ 𝑎 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑎 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) ) |
| 53 |
|
ovex |
⊢ ( 𝑛 + 1 ) ∈ V |
| 54 |
|
breq1 |
⊢ ( 𝑏 = ( 𝑛 + 1 ) → ( 𝑏 ∥ 𝑎 ↔ ( 𝑛 + 1 ) ∥ 𝑎 ) ) |
| 55 |
|
eleq1 |
⊢ ( 𝑏 = ( 𝑛 + 1 ) → ( 𝑏 ∈ 𝑆 ↔ ( 𝑛 + 1 ) ∈ 𝑆 ) ) |
| 56 |
54 55
|
imbi12d |
⊢ ( 𝑏 = ( 𝑛 + 1 ) → ( ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ( ( 𝑛 + 1 ) ∥ 𝑎 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) ) |
| 57 |
56
|
ralbidv |
⊢ ( 𝑏 = ( 𝑛 + 1 ) → ( ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑎 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑎 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) ) |
| 58 |
53 57
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { ( 𝑛 + 1 ) } ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑎 ∈ 𝑌 ( ( 𝑛 + 1 ) ∥ 𝑎 → ( 𝑛 + 1 ) ∈ 𝑆 ) ) |
| 59 |
52 58
|
imbitrrdi |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) → ∀ 𝑏 ∈ { ( 𝑛 + 1 ) } ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 60 |
59
|
ancld |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ∧ ∀ 𝑏 ∈ { ( 𝑛 + 1 ) } ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) ) |
| 61 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 62 |
|
fzsuc |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑛 + 1 ) ) = ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ) |
| 63 |
61 62
|
sylbi |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... ( 𝑛 + 1 ) ) = ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ) |
| 64 |
63
|
raleqdv |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 + 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ∀ 𝑏 ∈ ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 65 |
|
ralunb |
⊢ ( ∀ 𝑏 ∈ ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ∧ ∀ 𝑏 ∈ { ( 𝑛 + 1 ) } ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 66 |
64 65
|
bitrdi |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... ( 𝑛 + 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ∧ ∀ 𝑏 ∈ { ( 𝑛 + 1 ) } ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) ) |
| 67 |
60 66
|
sylibrd |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑏 ∈ ( 1 ... 𝑛 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) → ∀ 𝑏 ∈ ( 1 ... ( 𝑛 + 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) ) |
| 68 |
8 10 12 14 32 67
|
nnind |
⊢ ( 𝐵 ∈ ℕ → ∀ 𝑏 ∈ ( 1 ... 𝐵 ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 69 |
|
elfz1end |
⊢ ( 𝐵 ∈ ℕ ↔ 𝐵 ∈ ( 1 ... 𝐵 ) ) |
| 70 |
69
|
biimpi |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ( 1 ... 𝐵 ) ) |
| 71 |
6 68 70
|
rspcdva |
⊢ ( 𝐵 ∈ ℕ → ∀ 𝑎 ∈ 𝑌 ( 𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆 ) ) |
| 72 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐵 ∥ 𝑎 ↔ 𝐵 ∥ 𝐴 ) ) |
| 73 |
72
|
imbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆 ) ↔ ( 𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆 ) ) ) |
| 74 |
73
|
rspcv |
⊢ ( 𝐴 ∈ 𝑌 → ( ∀ 𝑎 ∈ 𝑌 ( 𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆 ) → ( 𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆 ) ) ) |
| 75 |
71 74
|
syl5 |
⊢ ( 𝐴 ∈ 𝑌 → ( 𝐵 ∈ ℕ → ( 𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆 ) ) ) |
| 76 |
75
|
3imp |
⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → 𝐵 ∈ 𝑆 ) |