| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
|
2sqlem7.2 |
|
| 3 |
|
breq1 |
|
| 4 |
|
eleq1 |
|
| 5 |
3 4
|
imbi12d |
|
| 6 |
5
|
ralbidv |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
raleqdv |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
raleqdv |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
raleqdv |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
raleqdv |
|
| 15 |
|
elfz1eq |
|
| 16 |
|
1z |
|
| 17 |
|
zgz |
|
| 18 |
16 17
|
ax-mp |
|
| 19 |
|
sq1 |
|
| 20 |
19
|
eqcomi |
|
| 21 |
|
fveq2 |
|
| 22 |
|
abs1 |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
23
|
oveq1d |
|
| 25 |
24
|
rspceeqv |
|
| 26 |
18 20 25
|
mp2an |
|
| 27 |
1
|
2sqlem1 |
|
| 28 |
26 27
|
mpbir |
|
| 29 |
15 28
|
eqeltrdi |
|
| 30 |
29
|
a1d |
|
| 31 |
30
|
ralrimivw |
|
| 32 |
31
|
rgen |
|
| 33 |
|
simplr |
|
| 34 |
|
nncn |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
ax-1cn |
|
| 37 |
|
pncan |
|
| 38 |
35 36 37
|
sylancl |
|
| 39 |
38
|
oveq2d |
|
| 40 |
33 39
|
raleqtrrdv |
|
| 41 |
|
simprr |
|
| 42 |
|
peano2nn |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simprl |
|
| 45 |
1 2 40 41 43 44
|
2sqlem9 |
|
| 46 |
45
|
expr |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
47
|
ex |
|
| 49 |
|
breq2 |
|
| 50 |
49
|
imbi1d |
|
| 51 |
50
|
cbvralvw |
|
| 52 |
48 51
|
imbitrrdi |
|
| 53 |
|
ovex |
|
| 54 |
|
breq1 |
|
| 55 |
|
eleq1 |
|
| 56 |
54 55
|
imbi12d |
|
| 57 |
56
|
ralbidv |
|
| 58 |
53 57
|
ralsn |
|
| 59 |
52 58
|
imbitrrdi |
|
| 60 |
59
|
ancld |
|
| 61 |
|
elnnuz |
|
| 62 |
|
fzsuc |
|
| 63 |
61 62
|
sylbi |
|
| 64 |
63
|
raleqdv |
|
| 65 |
|
ralunb |
|
| 66 |
64 65
|
bitrdi |
|
| 67 |
60 66
|
sylibrd |
|
| 68 |
8 10 12 14 32 67
|
nnind |
|
| 69 |
|
elfz1end |
|
| 70 |
69
|
biimpi |
|
| 71 |
6 68 70
|
rspcdva |
|
| 72 |
|
breq2 |
|
| 73 |
72
|
imbi1d |
|
| 74 |
73
|
rspcv |
|
| 75 |
71 74
|
syl5 |
|
| 76 |
75
|
3imp |
|