| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
|
2sqlem7.2 |
|
| 3 |
|
2sqlem9.5 |
|
| 4 |
|
2sqlem9.7 |
|
| 5 |
|
2sqlem9.6 |
|
| 6 |
|
2sqlem9.4 |
|
| 7 |
|
eqeq1 |
|
| 8 |
7
|
anbi2d |
|
| 9 |
8
|
2rexbidv |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
oveq1d |
|
| 14 |
13
|
eqeq2d |
|
| 15 |
11 14
|
anbi12d |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
eqeq1d |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
17 20
|
anbi12d |
|
| 22 |
15 21
|
cbvrex2vw |
|
| 23 |
9 22
|
bitrdi |
|
| 24 |
23 2
|
elab2g |
|
| 25 |
24
|
ibi |
|
| 26 |
6 25
|
syl |
|
| 27 |
|
simpr |
|
| 28 |
|
1z |
|
| 29 |
|
zgz |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
|
sq1 |
|
| 32 |
31
|
eqcomi |
|
| 33 |
|
fveq2 |
|
| 34 |
|
abs1 |
|
| 35 |
33 34
|
eqtrdi |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
rspceeqv |
|
| 38 |
30 32 37
|
mp2an |
|
| 39 |
1
|
2sqlem1 |
|
| 40 |
38 39
|
mpbir |
|
| 41 |
27 40
|
eqeltrdi |
|
| 42 |
3
|
ad2antrr |
|
| 43 |
4
|
ad2antrr |
|
| 44 |
1 2
|
2sqlem7 |
|
| 45 |
|
inss2 |
|
| 46 |
44 45
|
sstri |
|
| 47 |
46 6
|
sselid |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
5
|
ad2antrr |
|
| 50 |
|
simprr |
|
| 51 |
|
eluz2b3 |
|
| 52 |
49 50 51
|
sylanbrc |
|
| 53 |
|
simplrl |
|
| 54 |
|
simplrr |
|
| 55 |
|
simprll |
|
| 56 |
|
simprlr |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
1 2 42 43 48 52 53 54 55 56 57 58 59 60
|
2sqlem8 |
|
| 62 |
61
|
anassrs |
|
| 63 |
41 62
|
pm2.61dane |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
rexlimdvva |
|
| 66 |
26 65
|
mpd |
|