Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2sq.1 | |
|
2sqlem7.2 | |
||
Assertion | 2sqlem7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | |
|
2 | 2sqlem7.2 | |
|
3 | simpr | |
|
4 | 3 | reximi | |
5 | 4 | reximi | |
6 | 1 | 2sqlem2 | |
7 | 5 6 | sylibr | |
8 | ax-1ne0 | |
|
9 | gcdeq0 | |
|
10 | 9 | adantr | |
11 | simpr | |
|
12 | 11 | eqeq1d | |
13 | 10 12 | bitr3d | |
14 | 13 | necon3bbid | |
15 | 8 14 | mpbiri | |
16 | zsqcl2 | |
|
17 | 16 | ad2antrr | |
18 | 17 | nn0red | |
19 | 17 | nn0ge0d | |
20 | zsqcl2 | |
|
21 | 20 | ad2antlr | |
22 | 21 | nn0red | |
23 | 21 | nn0ge0d | |
24 | add20 | |
|
25 | 18 19 22 23 24 | syl22anc | |
26 | zcn | |
|
27 | 26 | ad2antrr | |
28 | zcn | |
|
29 | 28 | ad2antlr | |
30 | sqeq0 | |
|
31 | sqeq0 | |
|
32 | 30 31 | bi2anan9 | |
33 | 27 29 32 | syl2anc | |
34 | 25 33 | bitrd | |
35 | 15 34 | mtbird | |
36 | nn0addcl | |
|
37 | 16 20 36 | syl2an | |
38 | 37 | adantr | |
39 | elnn0 | |
|
40 | 38 39 | sylib | |
41 | 40 | ord | |
42 | 35 41 | mt3d | |
43 | eleq1 | |
|
44 | 42 43 | syl5ibrcom | |
45 | 44 | expimpd | |
46 | 45 | rexlimivv | |
47 | 7 46 | elind | |
48 | 47 | abssi | |
49 | 2 48 | eqsstri | |