| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
|
2sqlem7.2 |
|
| 3 |
|
simpr |
|
| 4 |
3
|
reximi |
|
| 5 |
4
|
reximi |
|
| 6 |
1
|
2sqlem2 |
|
| 7 |
5 6
|
sylibr |
|
| 8 |
|
ax-1ne0 |
|
| 9 |
|
gcdeq0 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
11
|
eqeq1d |
|
| 13 |
10 12
|
bitr3d |
|
| 14 |
13
|
necon3bbid |
|
| 15 |
8 14
|
mpbiri |
|
| 16 |
|
zsqcl2 |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
17
|
nn0red |
|
| 19 |
17
|
nn0ge0d |
|
| 20 |
|
zsqcl2 |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
21
|
nn0red |
|
| 23 |
21
|
nn0ge0d |
|
| 24 |
|
add20 |
|
| 25 |
18 19 22 23 24
|
syl22anc |
|
| 26 |
|
zcn |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
zcn |
|
| 29 |
28
|
ad2antlr |
|
| 30 |
|
sqeq0 |
|
| 31 |
|
sqeq0 |
|
| 32 |
30 31
|
bi2anan9 |
|
| 33 |
27 29 32
|
syl2anc |
|
| 34 |
25 33
|
bitrd |
|
| 35 |
15 34
|
mtbird |
|
| 36 |
|
nn0addcl |
|
| 37 |
16 20 36
|
syl2an |
|
| 38 |
37
|
adantr |
|
| 39 |
|
elnn0 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
40
|
ord |
|
| 42 |
35 41
|
mt3d |
|
| 43 |
|
eleq1 |
|
| 44 |
42 43
|
syl5ibrcom |
|
| 45 |
44
|
expimpd |
|
| 46 |
45
|
rexlimivv |
|
| 47 |
7 46
|
elind |
|
| 48 |
47
|
abssi |
|
| 49 |
2 48
|
eqsstri |
|