| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
| 2 |
|
4sq.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
4sq.3 |
⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) |
| 4 |
|
4sq.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
4sq.5 |
⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) |
| 6 |
|
4sq.6 |
⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } |
| 7 |
|
4sq.7 |
⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) |
| 8 |
|
4sq.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 9 |
|
4sq.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 10 |
|
4sq.b |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 11 |
|
4sq.c |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 12 |
|
4sq.d |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 13 |
|
4sq.e |
⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 14 |
|
4sq.f |
⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 15 |
|
4sq.g |
⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 16 |
|
4sq.h |
⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 17 |
|
4sq.r |
⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) |
| 18 |
|
4sq.p |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 19 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
| 20 |
8 19
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 21 |
9 20 13
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 23 |
|
zsqcl |
⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 25 |
24
|
zred |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 26 |
10 20 14
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 28 |
|
zsqcl |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
| 30 |
29
|
zred |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℝ ) |
| 31 |
25 30
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ) |
| 32 |
11 20 15
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
| 33 |
32
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 34 |
|
zsqcl |
⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
| 36 |
35
|
zred |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℝ ) |
| 37 |
12 20 16
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
| 38 |
37
|
simpld |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
| 39 |
|
zsqcl |
⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
| 41 |
40
|
zred |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℝ ) |
| 42 |
36 41
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℝ ) |
| 43 |
20
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 44 |
43
|
resqcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℝ ) |
| 45 |
44
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℝ ) |
| 46 |
45
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℝ ) |
| 47 |
9 20 13
|
4sqlem7 |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 48 |
10 20 14
|
4sqlem7 |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 49 |
25 30 46 46 47 48
|
le2addd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 50 |
45
|
recnd |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 51 |
50
|
2halvesd |
⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) = ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 52 |
49 51
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 53 |
11 20 15
|
4sqlem7 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 54 |
12 20 16
|
4sqlem7 |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 55 |
36 41 46 46 53 54
|
le2addd |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 56 |
55 51
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 57 |
31 42 45 45 52 56
|
le2addd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 58 |
44
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 59 |
58
|
2halvesd |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) = ( 𝑀 ↑ 2 ) ) |
| 60 |
57 59
|
breqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 ↑ 2 ) ) |
| 61 |
43
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 62 |
61
|
sqvald |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 63 |
60 62
|
breqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 · 𝑀 ) ) |
| 64 |
31 42
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
| 65 |
20
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 66 |
|
ledivmul |
⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ≤ 𝑀 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 · 𝑀 ) ) ) |
| 67 |
64 43 43 65 66
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ≤ 𝑀 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ≤ ( 𝑀 · 𝑀 ) ) ) |
| 68 |
63 67
|
mpbird |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ≤ 𝑀 ) |
| 69 |
17 68
|
eqbrtrid |
⊢ ( 𝜑 → 𝑅 ≤ 𝑀 ) |
| 70 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → 𝑅 = 0 ) |
| 71 |
17 70
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ) |
| 72 |
64
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℂ ) |
| 73 |
20
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 74 |
72 61 73
|
diveq0ad |
⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ) ) |
| 75 |
|
zsqcl2 |
⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 76 |
22 75
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 77 |
|
zsqcl2 |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 78 |
27 77
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 79 |
76 78
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ0 ) |
| 80 |
79
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 81 |
|
zsqcl2 |
⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
| 82 |
33 81
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
| 83 |
|
zsqcl2 |
⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
| 84 |
38 83
|
syl |
⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
| 85 |
82 84
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℕ0 ) |
| 86 |
85
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) |
| 87 |
|
add20 |
⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∧ ( ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 88 |
31 80 42 86 87
|
syl22anc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 89 |
74 88
|
bitrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 90 |
89
|
biimpa |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) = 0 ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 91 |
71 90
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 92 |
91
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ) |
| 93 |
76
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐸 ↑ 2 ) ) |
| 94 |
78
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ↑ 2 ) ) |
| 95 |
|
add20 |
⊢ ( ( ( ( 𝐸 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐸 ↑ 2 ) ) ∧ ( ( 𝐹 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ↑ 2 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ↔ ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) ) |
| 96 |
25 93 30 94 95
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ↔ ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) ) |
| 97 |
96
|
biimpa |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = 0 ) → ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) |
| 98 |
92 97
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐸 ↑ 2 ) = 0 ∧ ( 𝐹 ↑ 2 ) = 0 ) ) |
| 99 |
98
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐸 ↑ 2 ) = 0 ) |
| 100 |
9 20 13 99
|
4sqlem9 |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |
| 101 |
98
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐹 ↑ 2 ) = 0 ) |
| 102 |
10 20 14 101
|
4sqlem9 |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) |
| 103 |
20
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
| 104 |
103
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 105 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 106 |
9 105
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 107 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 108 |
10 107
|
syl |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 109 |
|
dvds2add |
⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℤ ∧ ( 𝐵 ↑ 2 ) ∈ ℤ ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 110 |
104 106 108 109
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 112 |
100 102 111
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 113 |
91
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) |
| 114 |
82
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐺 ↑ 2 ) ) |
| 115 |
84
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐻 ↑ 2 ) ) |
| 116 |
|
add20 |
⊢ ( ( ( ( 𝐺 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐺 ↑ 2 ) ) ∧ ( ( 𝐻 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐻 ↑ 2 ) ) ) → ( ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ↔ ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) ) |
| 117 |
36 114 41 115 116
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ↔ ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) ) |
| 118 |
117
|
biimpa |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) = 0 ) → ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) |
| 119 |
113 118
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( 𝐺 ↑ 2 ) = 0 ∧ ( 𝐻 ↑ 2 ) = 0 ) ) |
| 120 |
119
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐺 ↑ 2 ) = 0 ) |
| 121 |
11 20 15 120
|
4sqlem9 |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) |
| 122 |
119
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝐻 ↑ 2 ) = 0 ) |
| 123 |
12 20 16 122
|
4sqlem9 |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) |
| 124 |
|
zsqcl |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 125 |
11 124
|
syl |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 126 |
|
zsqcl |
⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 127 |
12 126
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 128 |
|
dvds2add |
⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝐶 ↑ 2 ) ∈ ℤ ∧ ( 𝐷 ↑ 2 ) ∈ ℤ ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 129 |
104 125 127 128
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝐷 ↑ 2 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 131 |
121 123 130
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 132 |
106 108
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 133 |
125 127
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 134 |
|
dvds2add |
⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ∧ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∧ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) |
| 135 |
104 132 133 134
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∧ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∧ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) |
| 137 |
112 131 136
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑅 = 0 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 138 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 139 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 140 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) = ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
4sqlem15 |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ∧ ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) ) |
| 142 |
141
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) ) |
| 143 |
142
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ) |
| 144 |
46
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℂ ) |
| 145 |
24
|
zcnd |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 146 |
144 145
|
subeq0ad |
⊢ ( 𝜑 → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ↔ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐸 ↑ 2 ) ) ) |
| 147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐸 ↑ 2 ) ) = 0 ↔ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐸 ↑ 2 ) ) ) |
| 148 |
143 147
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐸 ↑ 2 ) ) |
| 149 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 150 |
148 149
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℤ ) |
| 151 |
150 150
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 152 |
140 151
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℤ ) |
| 153 |
139 152
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ∈ ℤ ) |
| 154 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 155 |
154 152
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ∈ ℤ ) |
| 156 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 157 |
156 150
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 158 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 159 |
158 150
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 160 |
9 20 13 143
|
4sqlem10 |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 161 |
142
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐹 ↑ 2 ) ) = 0 ) |
| 162 |
10 20 14 161
|
4sqlem10 |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 163 |
138 157 159 160 162
|
dvds2addd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 164 |
106
|
zcnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 165 |
108
|
zcnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 166 |
164 165 144 144
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 167 |
51
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 168 |
166 167
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 170 |
163 169
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 171 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 172 |
171 150
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 173 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 174 |
173 150
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ∈ ℤ ) |
| 175 |
141
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ∧ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) ) |
| 176 |
175
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐺 ↑ 2 ) ) = 0 ) |
| 177 |
11 20 15 176
|
4sqlem10 |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 178 |
175
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐻 ↑ 2 ) ) = 0 ) |
| 179 |
12 20 16 178
|
4sqlem10 |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 180 |
138 172 174 177 179
|
dvds2addd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 181 |
125
|
zcnd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 182 |
127
|
zcnd |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 183 |
181 182 144 144
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) ) |
| 184 |
51
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 185 |
183 184
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐶 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 187 |
180 186
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) |
| 188 |
138 153 155 170 187
|
dvds2addd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) ) |
| 189 |
132
|
zcnd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 190 |
133
|
zcnd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 191 |
189 190 50 50
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) ) |
| 192 |
59
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) + ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 193 |
191 192
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝑀 ↑ 2 ) / 2 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 195 |
188 194
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) |
| 196 |
132 133
|
zaddcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ ℤ ) |
| 197 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ ℤ ) |
| 198 |
|
dvdssubr |
⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) ) |
| 199 |
138 197 198
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝑀 ↑ 2 ) ) ) ) |
| 200 |
195 199
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 201 |
137 200
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 202 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 203 |
201 202
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) |
| 204 |
203
|
ex |
⊢ ( 𝜑 → ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
| 205 |
69 204
|
jca |
⊢ ( 𝜑 → ( 𝑅 ≤ 𝑀 ∧ ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) ) |