Step |
Hyp |
Ref |
Expression |
1 |
|
aceq3lem.1 |
⊢ 𝐹 = ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
2
|
rnex |
⊢ ran 𝑦 ∈ V |
4 |
3
|
pwex |
⊢ 𝒫 ran 𝑦 ∈ V |
5 |
|
raleq |
⊢ ( 𝑥 = 𝒫 ran 𝑦 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝑥 = 𝒫 ran 𝑦 → ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
7 |
4 6
|
spcv |
⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
8 |
|
df-mpt |
⊢ ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) = { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } |
9 |
1 8
|
eqtri |
⊢ 𝐹 = { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } |
10 |
|
vex |
⊢ 𝑤 ∈ V |
11 |
10
|
eldm |
⊢ ( 𝑤 ∈ dom 𝑦 ↔ ∃ 𝑢 𝑤 𝑦 𝑢 ) |
12 |
|
abn0 |
⊢ ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ ↔ ∃ 𝑢 𝑤 𝑦 𝑢 ) |
13 |
11 12
|
bitr4i |
⊢ ( 𝑤 ∈ dom 𝑦 ↔ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ ) |
14 |
|
vex |
⊢ 𝑢 ∈ V |
15 |
10 14
|
brelrn |
⊢ ( 𝑤 𝑦 𝑢 → 𝑢 ∈ ran 𝑦 ) |
16 |
15
|
abssi |
⊢ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ⊆ ran 𝑦 |
17 |
3 16
|
elpwi2 |
⊢ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ∈ 𝒫 ran 𝑦 |
18 |
|
neeq1 |
⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( 𝑧 ≠ ∅ ↔ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ ) ) |
19 |
|
fveq2 |
⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
20 |
|
id |
⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) |
21 |
19 20
|
eleq12d |
⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) |
23 |
22
|
rspcv |
⊢ ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ∈ 𝒫 ran 𝑦 → ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) |
24 |
17 23
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
25 |
13 24
|
syl5bi |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑤 ∈ dom 𝑦 → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
26 |
25
|
imp |
⊢ ( ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ dom 𝑦 ) → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) |
27 |
|
fvex |
⊢ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ V |
28 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) → ( 𝑤 𝑦 𝑧 ↔ 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) |
29 |
|
breq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑤 𝑦 𝑢 ↔ 𝑤 𝑦 𝑧 ) ) |
30 |
29
|
cbvabv |
⊢ { 𝑢 ∣ 𝑤 𝑦 𝑢 } = { 𝑧 ∣ 𝑤 𝑦 𝑧 } |
31 |
27 28 30
|
elab2 |
⊢ ( ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ↔ 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
32 |
26 31
|
sylib |
⊢ ( ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ dom 𝑦 ) → 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
33 |
|
breq2 |
⊢ ( ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) → ( 𝑤 𝑦 ℎ ↔ 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) |
34 |
32 33
|
syl5ibrcom |
⊢ ( ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ dom 𝑦 ) → ( ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) → 𝑤 𝑦 ℎ ) ) |
35 |
34
|
expimpd |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) → 𝑤 𝑦 ℎ ) ) |
36 |
35
|
ssopab2dv |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } ⊆ { 〈 𝑤 , ℎ 〉 ∣ 𝑤 𝑦 ℎ } ) |
37 |
|
opabss |
⊢ { 〈 𝑤 , ℎ 〉 ∣ 𝑤 𝑦 ℎ } ⊆ 𝑦 |
38 |
36 37
|
sstrdi |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } ⊆ 𝑦 ) |
39 |
9 38
|
eqsstrid |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → 𝐹 ⊆ 𝑦 ) |
40 |
27 1
|
fnmpti |
⊢ 𝐹 Fn dom 𝑦 |
41 |
2
|
ssex |
⊢ ( 𝐹 ⊆ 𝑦 → 𝐹 ∈ V ) |
42 |
41
|
adantr |
⊢ ( ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) → 𝐹 ∈ V ) |
43 |
|
sseq1 |
⊢ ( 𝑔 = 𝐹 → ( 𝑔 ⊆ 𝑦 ↔ 𝐹 ⊆ 𝑦 ) ) |
44 |
|
fneq1 |
⊢ ( 𝑔 = 𝐹 → ( 𝑔 Fn dom 𝑦 ↔ 𝐹 Fn dom 𝑦 ) ) |
45 |
43 44
|
anbi12d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ↔ ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) ) ) |
46 |
45
|
spcegv |
⊢ ( 𝐹 ∈ V → ( ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) ) |
47 |
42 46
|
mpcom |
⊢ ( ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
48 |
39 40 47
|
sylancl |
⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
49 |
48
|
exlimiv |
⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
50 |
7 49
|
syl |
⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
51 |
|
sseq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ⊆ 𝑦 ↔ 𝑓 ⊆ 𝑦 ) ) |
52 |
|
fneq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Fn dom 𝑦 ↔ 𝑓 Fn dom 𝑦 ) ) |
53 |
51 52
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ↔ ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) ) |
54 |
53
|
cbvexvw |
⊢ ( ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |
55 |
50 54
|
sylib |
⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |