| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvlcvr1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cvlcvr1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cvlcvr1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cvlcvr1.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 5 |
|
cvlcvr1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ CvLat ) |
| 7 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 10 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
| 13 |
1 2 12 3
|
latnle |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ) ) |
| 14 |
8 9 11 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ) ) |
| 15 |
14
|
biimpd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 → 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ) ) |
| 16 |
|
simpl13 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝐾 ∈ CvLat ) |
| 17 |
16 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝐾 ∈ Lat ) |
| 18 |
|
simprll |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑧 ∈ 𝐵 ) |
| 19 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑋 ∈ 𝐵 ) |
| 20 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
| 21 |
20 10
|
syl |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑃 ∈ 𝐵 ) |
| 22 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 23 |
17 19 21 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 24 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 25 |
|
simprrl |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑋 ( lt ‘ 𝐾 ) 𝑧 ) |
| 26 |
|
simpl11 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝐾 ∈ OML ) |
| 27 |
|
simpl12 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝐾 ∈ CLat ) |
| 28 |
|
cvlatl |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) |
| 29 |
16 28
|
syl |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝐾 ∈ AtLat ) |
| 30 |
1 2 12 5
|
atlrelat1 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) |
| 31 |
26 27 29 19 18 30
|
syl311anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) |
| 32 |
25 31
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) |
| 33 |
17
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝐾 ∈ Lat ) |
| 34 |
1 5
|
atbase |
⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵 ) |
| 35 |
34
|
ad2antrl |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑞 ∈ 𝐵 ) |
| 36 |
18
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 37 |
23
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 38 |
|
simprrr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑞 ≤ 𝑧 ) |
| 39 |
24
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 40 |
1 2 33 35 36 37 38 39
|
lattrd |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑞 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 41 |
16
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝐾 ∈ CvLat ) |
| 42 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑞 ∈ 𝐴 ) |
| 43 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 44 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 45 |
|
simprrl |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ¬ 𝑞 ≤ 𝑋 ) |
| 46 |
1 2 3 5
|
cvlexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑞 ≤ 𝑋 ) → ( 𝑞 ≤ ( 𝑋 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑞 ) ) ) |
| 47 |
41 42 43 44 45 46
|
syl131anc |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( 𝑞 ≤ ( 𝑋 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑞 ) ) ) |
| 48 |
40 47
|
mpd |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑞 ) ) |
| 49 |
|
simprlr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → ¬ 𝑃 ≤ 𝑋 ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ¬ 𝑃 ≤ 𝑋 ) |
| 51 |
1 2 3 5
|
cvlexchb1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑞 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑞 ) ) ) |
| 52 |
41 43 42 44 50 51
|
syl131anc |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑞 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑞 ) ) ) |
| 53 |
48 52
|
mpbid |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑞 ) ) |
| 54 |
2 12
|
pltle |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 → 𝑋 ≤ 𝑧 ) ) |
| 55 |
26 19 18 54
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 → 𝑋 ≤ 𝑧 ) ) |
| 56 |
25 55
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑋 ≤ 𝑧 ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → 𝑋 ≤ 𝑧 ) |
| 58 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑧 ∧ 𝑞 ≤ 𝑧 ) ↔ ( 𝑋 ∨ 𝑞 ) ≤ 𝑧 ) ) |
| 59 |
33 44 35 36 58
|
syl13anc |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( ( 𝑋 ≤ 𝑧 ∧ 𝑞 ≤ 𝑧 ) ↔ ( 𝑋 ∨ 𝑞 ) ≤ 𝑧 ) ) |
| 60 |
57 38 59
|
mpbi2and |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( 𝑋 ∨ 𝑞 ) ≤ 𝑧 ) |
| 61 |
53 60
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑋 ∧ 𝑞 ≤ 𝑧 ) ) ) → ( 𝑋 ∨ 𝑃 ) ≤ 𝑧 ) |
| 62 |
32 61
|
rexlimddv |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → ( 𝑋 ∨ 𝑃 ) ≤ 𝑧 ) |
| 63 |
1 2 17 18 23 24 62
|
latasymd |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) |
| 64 |
63
|
exp44 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( ¬ 𝑃 ≤ 𝑋 → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) ) ) ) |
| 65 |
64
|
imp |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) ) ) |
| 66 |
65
|
ralrimdva |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 → ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) ) ) |
| 67 |
15 66
|
jcad |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 → ( 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) ) ) ) |
| 68 |
8 9 11 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 69 |
1 2 12 4
|
cvrval2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ↔ ( 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) ) ) ) |
| 70 |
8 9 68 69
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ↔ ( 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ≤ ( 𝑋 ∨ 𝑃 ) ) → 𝑧 = ( 𝑋 ∨ 𝑃 ) ) ) ) ) |
| 71 |
67 70
|
sylibrd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 → 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
| 72 |
8
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) → 𝐾 ∈ Lat ) |
| 73 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) → 𝑋 ∈ 𝐵 ) |
| 74 |
68
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 75 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) → 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) |
| 76 |
1 12 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ) |
| 77 |
72 73 74 75 76
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ) |
| 78 |
77
|
ex |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑋 ∨ 𝑃 ) ) ) |
| 79 |
78 14
|
sylibrd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) → ¬ 𝑃 ≤ 𝑋 ) ) |
| 80 |
71 79
|
impbid |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |