| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvfsumleOLD.m | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | dvfsumleOLD.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 3 |  | dvfsumleOLD.v | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | dvfsumleOLD.b | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) ) | 
						
							| 5 |  | dvfsumleOLD.c | ⊢ ( 𝑥  =  𝑀  →  𝐴  =  𝐶 ) | 
						
							| 6 |  | dvfsumleOLD.d | ⊢ ( 𝑥  =  𝑁  →  𝐴  =  𝐷 ) | 
						
							| 7 |  | dvfsumleOLD.x | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 8 |  | dvfsumge.l | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) ) )  →  𝐵  ≤  𝑋 ) | 
						
							| 9 |  | df-neg | ⊢ - 𝐴  =  ( 0  −  𝐴 ) | 
						
							| 10 | 9 | mpteq2i | ⊢ ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  - 𝐴 )  =  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  ( 0  −  𝐴 ) ) | 
						
							| 11 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 12 | 11 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 13 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 14 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 16 | 15 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 17 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 18 | 1 17 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 18 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 20 |  | iccssre | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀 [,] 𝑁 )  ⊆  ℝ ) | 
						
							| 21 | 16 19 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 [,] 𝑁 )  ⊆  ℝ ) | 
						
							| 22 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 23 | 21 22 | sstrdi | ⊢ ( 𝜑  →  ( 𝑀 [,] 𝑁 )  ⊆  ℂ ) | 
						
							| 24 | 22 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 25 |  | cncfmptc | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑀 [,] 𝑁 )  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  0 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 26 | 13 23 24 25 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  0 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 27 |  | resubcl | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  −  𝐴 )  ∈  ℝ ) | 
						
							| 28 | 11 12 26 2 22 27 | cncfmpt2ss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  ( 0  −  𝐴 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 29 | 10 28 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  - 𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | 
						
							| 30 |  | negex | ⊢ - 𝐵  ∈  V | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  - 𝐵  ∈  V ) | 
						
							| 32 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 34 |  | ioossicc | ⊢ ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 ) | 
						
							| 35 | 34 | sseli | ⊢ ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  →  𝑥  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 36 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ )  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 37 | 2 36 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 38 | 37 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 39 | 35 38 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 40 | 39 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 41 | 33 40 3 4 | dvmptneg | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  - 𝐴 ) )  =  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  - 𝐵 ) ) | 
						
							| 42 | 5 | negeqd | ⊢ ( 𝑥  =  𝑀  →  - 𝐴  =  - 𝐶 ) | 
						
							| 43 | 6 | negeqd | ⊢ ( 𝑥  =  𝑁  →  - 𝐴  =  - 𝐷 ) | 
						
							| 44 | 7 | renegcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  - 𝑋  ∈  ℝ ) | 
						
							| 45 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 46 | 45 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ∈  ℝ* ) | 
						
							| 47 |  | elfzole1 | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  ≤  𝑘 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ≤  𝑘 ) | 
						
							| 49 |  | iooss1 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑀  ≤  𝑘 )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) ( 𝑘  +  1 ) ) ) | 
						
							| 50 | 46 48 49 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) ( 𝑘  +  1 ) ) ) | 
						
							| 51 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 52 | 51 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑁  ∈  ℝ* ) | 
						
							| 53 |  | fzofzp1 | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 55 |  | elfzle2 | ⊢ ( ( 𝑘  +  1 )  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑘  +  1 )  ≤  𝑁 ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘  +  1 )  ≤  𝑁 ) | 
						
							| 57 |  | iooss2 | ⊢ ( ( 𝑁  ∈  ℝ*  ∧  ( 𝑘  +  1 )  ≤  𝑁 )  →  ( 𝑀 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 58 | 52 56 57 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 59 | 50 58 | sstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑘 (,) ( 𝑘  +  1 ) )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 60 | 59 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) )  →  𝑥  ∈  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 61 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 62 | 35 61 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 63 | 62 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) | 
						
							| 64 |  | ioossre | ⊢ ( 𝑀 (,) 𝑁 )  ⊆  ℝ | 
						
							| 65 |  | dvfre | ⊢ ( ( ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ  ∧  ( 𝑀 (,) 𝑁 )  ⊆  ℝ )  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) : dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) ⟶ ℝ ) | 
						
							| 66 | 63 64 65 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) : dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) ⟶ ℝ ) | 
						
							| 67 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) ) | 
						
							| 68 | 67 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  dom  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) ) | 
						
							| 69 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  𝑉 ) | 
						
							| 71 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  ( 𝑀 (,) 𝑁 ) 𝐵  ∈  𝑉  →  dom  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  dom  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 73 | 68 72 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 74 | 67 73 | feq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) : dom  ( ℝ  D  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐴 ) ) ⟶ ℝ  ↔  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) | 
						
							| 75 | 66 74 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) | 
						
							| 76 | 75 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 77 | 60 76 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 78 | 77 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 79 | 7 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 80 | 78 79 | lenegd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) ) )  →  ( 𝐵  ≤  𝑋  ↔  - 𝑋  ≤  - 𝐵 ) ) | 
						
							| 81 | 8 80 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑥  ∈  ( 𝑘 (,) ( 𝑘  +  1 ) ) ) )  →  - 𝑋  ≤  - 𝐵 ) | 
						
							| 82 | 1 29 31 41 42 43 44 81 | dvfsumle | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) - 𝑋  ≤  ( - 𝐷  −  - 𝐶 ) ) | 
						
							| 83 |  | fzofi | ⊢ ( 𝑀 ..^ 𝑁 )  ∈  Fin | 
						
							| 84 | 83 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ..^ 𝑁 )  ∈  Fin ) | 
						
							| 85 | 7 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 86 | 84 85 | fsumneg | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) - 𝑋  =  - Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋 ) | 
						
							| 87 | 6 | eleq1d | ⊢ ( 𝑥  =  𝑁  →  ( 𝐴  ∈  ℝ  ↔  𝐷  ∈  ℝ ) ) | 
						
							| 88 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 )  =  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) | 
						
							| 89 | 88 | fmpt | ⊢ ( ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ  ↔  ( 𝑥  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | 
						
							| 90 | 37 89 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝑀 [,] 𝑁 ) 𝐴  ∈  ℝ ) | 
						
							| 91 | 16 | rexrd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ* ) | 
						
							| 92 | 19 | rexrd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ* ) | 
						
							| 93 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑁 ) | 
						
							| 94 | 1 93 | syl | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 95 |  | ubicc2 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑁  ∈  ℝ*  ∧  𝑀  ≤  𝑁 )  →  𝑁  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 96 | 91 92 94 95 | syl3anc | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 97 | 87 90 96 | rspcdva | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 98 | 97 | recnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 99 | 5 | eleq1d | ⊢ ( 𝑥  =  𝑀  →  ( 𝐴  ∈  ℝ  ↔  𝐶  ∈  ℝ ) ) | 
						
							| 100 |  | lbicc2 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑁  ∈  ℝ*  ∧  𝑀  ≤  𝑁 )  →  𝑀  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 101 | 91 92 94 100 | syl3anc | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 102 | 99 90 101 | rspcdva | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 103 | 102 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 104 | 98 103 | neg2subd | ⊢ ( 𝜑  →  ( - 𝐷  −  - 𝐶 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 105 | 98 103 | negsubdi2d | ⊢ ( 𝜑  →  - ( 𝐷  −  𝐶 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 106 | 104 105 | eqtr4d | ⊢ ( 𝜑  →  ( - 𝐷  −  - 𝐶 )  =  - ( 𝐷  −  𝐶 ) ) | 
						
							| 107 | 82 86 106 | 3brtr3d | ⊢ ( 𝜑  →  - Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋  ≤  - ( 𝐷  −  𝐶 ) ) | 
						
							| 108 | 97 102 | resubcld | ⊢ ( 𝜑  →  ( 𝐷  −  𝐶 )  ∈  ℝ ) | 
						
							| 109 | 84 7 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋  ∈  ℝ ) | 
						
							| 110 | 108 109 | lenegd | ⊢ ( 𝜑  →  ( ( 𝐷  −  𝐶 )  ≤  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋  ↔  - Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋  ≤  - ( 𝐷  −  𝐶 ) ) ) | 
						
							| 111 | 107 110 | mpbird | ⊢ ( 𝜑  →  ( 𝐷  −  𝐶 )  ≤  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝑋 ) |