Metamath Proof Explorer


Theorem dvfsumge

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Hypotheses dvfsumle.m φ N M
dvfsumle.a φ x M N A : M N cn
dvfsumle.v φ x M N B V
dvfsumle.b φ dx M N A d x = x M N B
dvfsumle.c x = M A = C
dvfsumle.d x = N A = D
dvfsumle.x φ k M ..^ N X
dvfsumge.l φ k M ..^ N x k k + 1 B X
Assertion dvfsumge φ D C k M ..^ N X

Proof

Step Hyp Ref Expression
1 dvfsumle.m φ N M
2 dvfsumle.a φ x M N A : M N cn
3 dvfsumle.v φ x M N B V
4 dvfsumle.b φ dx M N A d x = x M N B
5 dvfsumle.c x = M A = C
6 dvfsumle.d x = N A = D
7 dvfsumle.x φ k M ..^ N X
8 dvfsumge.l φ k M ..^ N x k k + 1 B X
9 df-neg A = 0 A
10 9 mpteq2i x M N A = x M N 0 A
11 eqid TopOpen fld = TopOpen fld
12 11 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
13 0red φ 0
14 eluzel2 N M M
15 1 14 syl φ M
16 15 zred φ M
17 eluzelz N M N
18 1 17 syl φ N
19 18 zred φ N
20 iccssre M N M N
21 16 19 20 syl2anc φ M N
22 ax-resscn
23 21 22 sstrdi φ M N
24 22 a1i φ
25 cncfmptc 0 M N x M N 0 : M N cn
26 13 23 24 25 syl3anc φ x M N 0 : M N cn
27 resubcl 0 A 0 A
28 11 12 26 2 22 27 cncfmpt2ss φ x M N 0 A : M N cn
29 10 28 eqeltrid φ x M N A : M N cn
30 negex B V
31 30 a1i φ x M N B V
32 reelprrecn
33 32 a1i φ
34 ioossicc M N M N
35 34 sseli x M N x M N
36 cncff x M N A : M N cn x M N A : M N
37 2 36 syl φ x M N A : M N
38 37 fvmptelrn φ x M N A
39 35 38 sylan2 φ x M N A
40 39 recnd φ x M N A
41 33 40 3 4 dvmptneg φ dx M N A d x = x M N B
42 5 negeqd x = M A = C
43 6 negeqd x = N A = D
44 7 renegcld φ k M ..^ N X
45 16 adantr φ k M ..^ N M
46 45 rexrd φ k M ..^ N M *
47 elfzole1 k M ..^ N M k
48 47 adantl φ k M ..^ N M k
49 iooss1 M * M k k k + 1 M k + 1
50 46 48 49 syl2anc φ k M ..^ N k k + 1 M k + 1
51 19 adantr φ k M ..^ N N
52 51 rexrd φ k M ..^ N N *
53 fzofzp1 k M ..^ N k + 1 M N
54 53 adantl φ k M ..^ N k + 1 M N
55 elfzle2 k + 1 M N k + 1 N
56 54 55 syl φ k M ..^ N k + 1 N
57 iooss2 N * k + 1 N M k + 1 M N
58 52 56 57 syl2anc φ k M ..^ N M k + 1 M N
59 50 58 sstrd φ k M ..^ N k k + 1 M N
60 59 sselda φ k M ..^ N x k k + 1 x M N
61 38 adantlr φ k M ..^ N x M N A
62 35 61 sylan2 φ k M ..^ N x M N A
63 62 fmpttd φ k M ..^ N x M N A : M N
64 ioossre M N
65 dvfre x M N A : M N M N dx M N A d x : dom dx M N A d x
66 63 64 65 sylancl φ k M ..^ N dx M N A d x : dom dx M N A d x
67 4 adantr φ k M ..^ N dx M N A d x = x M N B
68 67 dmeqd φ k M ..^ N dom dx M N A d x = dom x M N B
69 3 adantlr φ k M ..^ N x M N B V
70 69 ralrimiva φ k M ..^ N x M N B V
71 dmmptg x M N B V dom x M N B = M N
72 70 71 syl φ k M ..^ N dom x M N B = M N
73 68 72 eqtrd φ k M ..^ N dom dx M N A d x = M N
74 67 73 feq12d φ k M ..^ N dx M N A d x : dom dx M N A d x x M N B : M N
75 66 74 mpbid φ k M ..^ N x M N B : M N
76 75 fvmptelrn φ k M ..^ N x M N B
77 60 76 syldan φ k M ..^ N x k k + 1 B
78 77 anasss φ k M ..^ N x k k + 1 B
79 7 adantrr φ k M ..^ N x k k + 1 X
80 78 79 lenegd φ k M ..^ N x k k + 1 B X X B
81 8 80 mpbid φ k M ..^ N x k k + 1 X B
82 1 29 31 41 42 43 44 81 dvfsumle φ k M ..^ N X - D - C
83 fzofi M ..^ N Fin
84 83 a1i φ M ..^ N Fin
85 7 recnd φ k M ..^ N X
86 84 85 fsumneg φ k M ..^ N X = k M ..^ N X
87 6 eleq1d x = N A D
88 eqid x M N A = x M N A
89 88 fmpt x M N A x M N A : M N
90 37 89 sylibr φ x M N A
91 16 rexrd φ M *
92 19 rexrd φ N *
93 eluzle N M M N
94 1 93 syl φ M N
95 ubicc2 M * N * M N N M N
96 91 92 94 95 syl3anc φ N M N
97 87 90 96 rspcdva φ D
98 97 recnd φ D
99 5 eleq1d x = M A C
100 lbicc2 M * N * M N M M N
101 91 92 94 100 syl3anc φ M M N
102 99 90 101 rspcdva φ C
103 102 recnd φ C
104 98 103 neg2subd φ - D - C = C D
105 98 103 negsubdi2d φ D C = C D
106 104 105 eqtr4d φ - D - C = D C
107 82 86 106 3brtr3d φ k M ..^ N X D C
108 97 102 resubcld φ D C
109 84 7 fsumrecl φ k M ..^ N X
110 108 109 lenegd φ D C k M ..^ N X k M ..^ N X D C
111 107 110 mpbird φ D C k M ..^ N X