Metamath Proof Explorer


Theorem dvfsumabs

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Hypotheses dvfsumabs.m φ N M
dvfsumabs.a φ x M N A : M N cn
dvfsumabs.v φ x M N B V
dvfsumabs.b φ dx M N A d x = x M N B
dvfsumabs.c x = M A = C
dvfsumabs.d x = N A = D
dvfsumabs.x φ k M ..^ N X
dvfsumabs.y φ k M ..^ N Y
dvfsumabs.l φ k M ..^ N x k k + 1 X B Y
Assertion dvfsumabs φ k M ..^ N X D C k M ..^ N Y

Proof

Step Hyp Ref Expression
1 dvfsumabs.m φ N M
2 dvfsumabs.a φ x M N A : M N cn
3 dvfsumabs.v φ x M N B V
4 dvfsumabs.b φ dx M N A d x = x M N B
5 dvfsumabs.c x = M A = C
6 dvfsumabs.d x = N A = D
7 dvfsumabs.x φ k M ..^ N X
8 dvfsumabs.y φ k M ..^ N Y
9 dvfsumabs.l φ k M ..^ N x k k + 1 X B Y
10 fzofi M ..^ N Fin
11 10 a1i φ M ..^ N Fin
12 eluzel2 N M M
13 1 12 syl φ M
14 eluzelz N M N
15 1 14 syl φ N
16 fzval2 M N M N = M N
17 13 15 16 syl2anc φ M N = M N
18 inss1 M N M N
19 17 18 eqsstrdi φ M N M N
20 19 sselda φ y M N y M N
21 cncff x M N A : M N cn x M N A : M N
22 2 21 syl φ x M N A : M N
23 eqid x M N A = x M N A
24 23 fmpt x M N A x M N A : M N
25 22 24 sylibr φ x M N A
26 nfcsb1v _ x y / x A
27 26 nfel1 x y / x A
28 csbeq1a x = y A = y / x A
29 28 eleq1d x = y A y / x A
30 27 29 rspc y M N x M N A y / x A
31 25 30 mpan9 φ y M N y / x A
32 20 31 syldan φ y M N y / x A
33 32 ralrimiva φ y M N y / x A
34 fzofzp1 k M ..^ N k + 1 M N
35 csbeq1 y = k + 1 y / x A = k + 1 / x A
36 35 eleq1d y = k + 1 y / x A k + 1 / x A
37 36 rspccva y M N y / x A k + 1 M N k + 1 / x A
38 33 34 37 syl2an φ k M ..^ N k + 1 / x A
39 elfzofz k M ..^ N k M N
40 csbeq1 y = k y / x A = k / x A
41 40 eleq1d y = k y / x A k / x A
42 41 rspccva y M N y / x A k M N k / x A
43 33 39 42 syl2an φ k M ..^ N k / x A
44 38 43 subcld φ k M ..^ N k + 1 / x A k / x A
45 11 7 44 fsumsub φ k M ..^ N X k + 1 / x A k / x A = k M ..^ N X k M ..^ N k + 1 / x A k / x A
46 vex y V
47 46 a1i y = M y V
48 eqeq2 y = M x = y x = M
49 48 biimpa y = M x = y x = M
50 49 5 syl y = M x = y A = C
51 47 50 csbied y = M y / x A = C
52 46 a1i y = N y V
53 eqeq2 y = N x = y x = N
54 53 biimpa y = N x = y x = N
55 54 6 syl y = N x = y A = D
56 52 55 csbied y = N y / x A = D
57 40 35 51 56 1 32 telfsumo2 φ k M ..^ N k + 1 / x A k / x A = D C
58 57 oveq2d φ k M ..^ N X k M ..^ N k + 1 / x A k / x A = k M ..^ N X D C
59 45 58 eqtrd φ k M ..^ N X k + 1 / x A k / x A = k M ..^ N X D C
60 59 fveq2d φ k M ..^ N X k + 1 / x A k / x A = k M ..^ N X D C
61 7 44 subcld φ k M ..^ N X k + 1 / x A k / x A
62 11 61 fsumcl φ k M ..^ N X k + 1 / x A k / x A
63 62 abscld φ k M ..^ N X k + 1 / x A k / x A
64 61 abscld φ k M ..^ N X k + 1 / x A k / x A
65 11 64 fsumrecl φ k M ..^ N X k + 1 / x A k / x A
66 11 8 fsumrecl φ k M ..^ N Y
67 11 61 fsumabs φ k M ..^ N X k + 1 / x A k / x A k M ..^ N X k + 1 / x A k / x A
68 elfzoelz k M ..^ N k
69 68 adantl φ k M ..^ N k
70 69 zred φ k M ..^ N k
71 70 rexrd φ k M ..^ N k *
72 peano2re k k + 1
73 70 72 syl φ k M ..^ N k + 1
74 73 rexrd φ k M ..^ N k + 1 *
75 70 lep1d φ k M ..^ N k k + 1
76 ubicc2 k * k + 1 * k k + 1 k + 1 k k + 1
77 71 74 75 76 syl3anc φ k M ..^ N k + 1 k k + 1
78 lbicc2 k * k + 1 * k k + 1 k k k + 1
79 71 74 75 78 syl3anc φ k M ..^ N k k k + 1
80 13 zred φ M
81 80 adantr φ k M ..^ N M
82 15 zred φ N
83 82 adantr φ k M ..^ N N
84 elfzole1 k M ..^ N M k
85 84 adantl φ k M ..^ N M k
86 34 adantl φ k M ..^ N k + 1 M N
87 elfzle2 k + 1 M N k + 1 N
88 86 87 syl φ k M ..^ N k + 1 N
89 iccss M N M k k + 1 N k k + 1 M N
90 81 83 85 88 89 syl22anc φ k M ..^ N k k + 1 M N
91 90 resmptd φ k M ..^ N x M N X x A k k + 1 = x k k + 1 X x A
92 eqid TopOpen fld = TopOpen fld
93 92 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
94 93 a1i φ k M ..^ N TopOpen fld × t TopOpen fld Cn TopOpen fld
95 iccssre M N M N
96 80 82 95 syl2anc φ M N
97 96 adantr φ k M ..^ N M N
98 ax-resscn
99 97 98 sstrdi φ k M ..^ N M N
100 ssid
101 100 a1i φ k M ..^ N
102 cncfmptc X M N x M N X : M N cn
103 7 99 101 102 syl3anc φ k M ..^ N x M N X : M N cn
104 cncfmptid M N x M N x : M N cn
105 99 100 104 sylancl φ k M ..^ N x M N x : M N cn
106 103 105 mulcncf φ k M ..^ N x M N X x : M N cn
107 2 adantr φ k M ..^ N x M N A : M N cn
108 92 94 106 107 cncfmpt2f φ k M ..^ N x M N X x A : M N cn
109 rescncf k k + 1 M N x M N X x A : M N cn x M N X x A k k + 1 : k k + 1 cn
110 90 108 109 sylc φ k M ..^ N x M N X x A k k + 1 : k k + 1 cn
111 91 110 eqeltrrd φ k M ..^ N x k k + 1 X x A : k k + 1 cn
112 98 a1i φ k M ..^ N
113 90 97 sstrd φ k M ..^ N k k + 1
114 90 sselda φ k M ..^ N x k k + 1 x M N
115 7 adantr φ k M ..^ N x M N X
116 99 sselda φ k M ..^ N x M N x
117 115 116 mulcld φ k M ..^ N x M N X x
118 25 r19.21bi φ x M N A
119 118 adantlr φ k M ..^ N x M N A
120 117 119 subcld φ k M ..^ N x M N X x A
121 114 120 syldan φ k M ..^ N x k k + 1 X x A
122 92 tgioo2 topGen ran . = TopOpen fld 𝑡
123 iccntr k k + 1 int topGen ran . k k + 1 = k k + 1
124 70 73 123 syl2anc φ k M ..^ N int topGen ran . k k + 1 = k k + 1
125 112 113 121 122 92 124 dvmptntr φ k M ..^ N dx k k + 1 X x A d x = dx k k + 1 X x A d x
126 reelprrecn
127 126 a1i φ k M ..^ N
128 ioossicc M N M N
129 128 sseli x M N x M N
130 129 120 sylan2 φ k M ..^ N x M N X x A
131 ovex X B V
132 131 a1i φ k M ..^ N x M N X B V
133 129 117 sylan2 φ k M ..^ N x M N X x
134 7 adantr φ k M ..^ N x M N X
135 128 99 sstrid φ k M ..^ N M N
136 135 sselda φ k M ..^ N x M N x
137 1cnd φ k M ..^ N x M N 1
138 112 sselda φ k M ..^ N x x
139 1cnd φ k M ..^ N x 1
140 127 dvmptid φ k M ..^ N dx x d x = x 1
141 128 97 sstrid φ k M ..^ N M N
142 iooretop M N topGen ran .
143 142 a1i φ k M ..^ N M N topGen ran .
144 127 138 139 140 141 122 92 143 dvmptres φ k M ..^ N dx M N x d x = x M N 1
145 127 136 137 144 7 dvmptcmul φ k M ..^ N dx M N X x d x = x M N X 1
146 7 mulid1d φ k M ..^ N X 1 = X
147 146 mpteq2dv φ k M ..^ N x M N X 1 = x M N X
148 145 147 eqtrd φ k M ..^ N dx M N X x d x = x M N X
149 129 119 sylan2 φ k M ..^ N x M N A
150 3 adantlr φ k M ..^ N x M N B V
151 4 adantr φ k M ..^ N dx M N A d x = x M N B
152 127 133 134 148 149 150 151 dvmptsub φ k M ..^ N dx M N X x A d x = x M N X B
153 81 rexrd φ k M ..^ N M *
154 iooss1 M * M k k k + 1 M k + 1
155 153 85 154 syl2anc φ k M ..^ N k k + 1 M k + 1
156 83 rexrd φ k M ..^ N N *
157 iooss2 N * k + 1 N M k + 1 M N
158 156 88 157 syl2anc φ k M ..^ N M k + 1 M N
159 155 158 sstrd φ k M ..^ N k k + 1 M N
160 iooretop k k + 1 topGen ran .
161 160 a1i φ k M ..^ N k k + 1 topGen ran .
162 127 130 132 152 159 122 92 161 dvmptres φ k M ..^ N dx k k + 1 X x A d x = x k k + 1 X B
163 125 162 eqtrd φ k M ..^ N dx k k + 1 X x A d x = x k k + 1 X B
164 163 dmeqd φ k M ..^ N dom dx k k + 1 X x A d x = dom x k k + 1 X B
165 eqid x k k + 1 X B = x k k + 1 X B
166 131 165 dmmpti dom x k k + 1 X B = k k + 1
167 164 166 eqtrdi φ k M ..^ N dom dx k k + 1 X x A d x = k k + 1
168 163 adantr φ k M ..^ N x k k + 1 dx k k + 1 X x A d x = x k k + 1 X B
169 168 fveq1d φ k M ..^ N x k k + 1 dx k k + 1 X x A d x x = x k k + 1 X B x
170 simpr φ k M ..^ N x k k + 1 x k k + 1
171 165 fvmpt2 x k k + 1 X B V x k k + 1 X B x = X B
172 170 131 171 sylancl φ k M ..^ N x k k + 1 x k k + 1 X B x = X B
173 169 172 eqtrd φ k M ..^ N x k k + 1 dx k k + 1 X x A d x x = X B
174 173 fveq2d φ k M ..^ N x k k + 1 dx k k + 1 X x A d x x = X B
175 9 anassrs φ k M ..^ N x k k + 1 X B Y
176 174 175 eqbrtrd φ k M ..^ N x k k + 1 dx k k + 1 X x A d x x Y
177 176 ralrimiva φ k M ..^ N x k k + 1 dx k k + 1 X x A d x x Y
178 nfcv _ x abs
179 nfcv _ x
180 nfcv _ x D
181 nfmpt1 _ x x k k + 1 X x A
182 179 180 181 nfov _ x dx k k + 1 X x A d x
183 nfcv _ x y
184 182 183 nffv _ x dx k k + 1 X x A d x y
185 178 184 nffv _ x dx k k + 1 X x A d x y
186 nfcv _ x
187 nfcv _ x Y
188 185 186 187 nfbr x dx k k + 1 X x A d x y Y
189 2fveq3 x = y dx k k + 1 X x A d x x = dx k k + 1 X x A d x y
190 189 breq1d x = y dx k k + 1 X x A d x x Y dx k k + 1 X x A d x y Y
191 188 190 rspc y k k + 1 x k k + 1 dx k k + 1 X x A d x x Y dx k k + 1 X x A d x y Y
192 177 191 mpan9 φ k M ..^ N y k k + 1 dx k k + 1 X x A d x y Y
193 70 73 111 167 8 192 dvlip φ k M ..^ N k + 1 k k + 1 k k k + 1 x k k + 1 X x A k + 1 x k k + 1 X x A k Y k + 1 - k
194 193 ex φ k M ..^ N k + 1 k k + 1 k k k + 1 x k k + 1 X x A k + 1 x k k + 1 X x A k Y k + 1 - k
195 77 79 194 mp2and φ k M ..^ N x k k + 1 X x A k + 1 x k k + 1 X x A k Y k + 1 - k
196 ovex X k + 1 k + 1 / x A V
197 nfcv _ x k + 1
198 nfcv _ x X k + 1
199 nfcv _ x
200 nfcsb1v _ x k + 1 / x A
201 198 199 200 nfov _ x X k + 1 k + 1 / x A
202 oveq2 x = k + 1 X x = X k + 1
203 csbeq1a x = k + 1 A = k + 1 / x A
204 202 203 oveq12d x = k + 1 X x A = X k + 1 k + 1 / x A
205 eqid x k k + 1 X x A = x k k + 1 X x A
206 197 201 204 205 fvmptf k + 1 k k + 1 X k + 1 k + 1 / x A V x k k + 1 X x A k + 1 = X k + 1 k + 1 / x A
207 77 196 206 sylancl φ k M ..^ N x k k + 1 X x A k + 1 = X k + 1 k + 1 / x A
208 70 recnd φ k M ..^ N k
209 7 208 mulcld φ k M ..^ N X k
210 209 43 subcld φ k M ..^ N X k k / x A
211 nfcv _ x k
212 nfcv _ x X k
213 nfcsb1v _ x k / x A
214 212 199 213 nfov _ x X k k / x A
215 oveq2 x = k X x = X k
216 csbeq1a x = k A = k / x A
217 215 216 oveq12d x = k X x A = X k k / x A
218 211 214 217 205 fvmptf k k k + 1 X k k / x A x k k + 1 X x A k = X k k / x A
219 79 210 218 syl2anc φ k M ..^ N x k k + 1 X x A k = X k k / x A
220 207 219 oveq12d φ k M ..^ N x k k + 1 X x A k + 1 x k k + 1 X x A k = X k + 1 - k + 1 / x A - X k k / x A
221 peano2cn k k + 1
222 208 221 syl φ k M ..^ N k + 1
223 7 222 mulcld φ k M ..^ N X k + 1
224 223 209 38 43 sub4d φ k M ..^ N X k + 1 - X k - k + 1 / x A k / x A = X k + 1 - k + 1 / x A - X k k / x A
225 1cnd φ k M ..^ N 1
226 208 225 pncan2d φ k M ..^ N k + 1 - k = 1
227 226 oveq2d φ k M ..^ N X k + 1 - k = X 1
228 7 222 208 subdid φ k M ..^ N X k + 1 - k = X k + 1 X k
229 227 228 146 3eqtr3d φ k M ..^ N X k + 1 X k = X
230 229 oveq1d φ k M ..^ N X k + 1 - X k - k + 1 / x A k / x A = X k + 1 / x A k / x A
231 220 224 230 3eqtr2rd φ k M ..^ N X k + 1 / x A k / x A = x k k + 1 X x A k + 1 x k k + 1 X x A k
232 231 fveq2d φ k M ..^ N X k + 1 / x A k / x A = x k k + 1 X x A k + 1 x k k + 1 X x A k
233 226 fveq2d φ k M ..^ N k + 1 - k = 1
234 abs1 1 = 1
235 233 234 eqtrdi φ k M ..^ N k + 1 - k = 1
236 235 oveq2d φ k M ..^ N Y k + 1 - k = Y 1
237 8 recnd φ k M ..^ N Y
238 237 mulid1d φ k M ..^ N Y 1 = Y
239 236 238 eqtr2d φ k M ..^ N Y = Y k + 1 - k
240 195 232 239 3brtr4d φ k M ..^ N X k + 1 / x A k / x A Y
241 11 64 8 240 fsumle φ k M ..^ N X k + 1 / x A k / x A k M ..^ N Y
242 63 65 66 67 241 letrd φ k M ..^ N X k + 1 / x A k / x A k M ..^ N Y
243 60 242 eqbrtrrd φ k M ..^ N X D C k M ..^ N Y