| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
| 8 |
1 7
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 9 |
1 2 3 4 5 6
|
efgsf |
⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 10 |
9
|
fdmi |
⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 11 |
10
|
feq2i |
⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 12 |
9 11
|
mpbir |
⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 13 |
12
|
ffvelcdmi |
⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐴 ) ∈ 𝑊 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝐴 ) ∈ 𝑊 ) |
| 15 |
8 14
|
sselid |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) |
| 16 |
|
lencl |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 18 |
|
peano2nn0 |
⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℕ0 → ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ∈ ℕ0 ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ∈ ℕ0 ) |
| 20 |
|
breq2 |
⊢ ( 𝑐 = 0 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 ) ) |
| 21 |
20
|
imbi1d |
⊢ ( 𝑐 = 0 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 22 |
21
|
2ralbidv |
⊢ ( 𝑐 = 0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 23 |
|
breq2 |
⊢ ( 𝑐 = 𝑖 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ) ) |
| 24 |
23
|
imbi1d |
⊢ ( 𝑐 = 𝑖 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 25 |
24
|
2ralbidv |
⊢ ( 𝑐 = 𝑖 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 26 |
|
breq2 |
⊢ ( 𝑐 = ( 𝑖 + 1 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ) ) |
| 27 |
26
|
imbi1d |
⊢ ( 𝑐 = ( 𝑖 + 1 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 28 |
27
|
2ralbidv |
⊢ ( 𝑐 = ( 𝑖 + 1 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 29 |
|
breq2 |
⊢ ( 𝑐 = ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ) ) |
| 30 |
29
|
imbi1d |
⊢ ( 𝑐 = ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 31 |
30
|
2ralbidv |
⊢ ( 𝑐 = ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 32 |
12
|
ffvelcdmi |
⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑎 ) ∈ 𝑊 ) |
| 33 |
8 32
|
sselid |
⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ) |
| 34 |
|
lencl |
⊢ ( ( 𝑆 ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 35 |
33 34
|
syl |
⊢ ( 𝑎 ∈ dom 𝑆 → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 36 |
|
nn0nlt0 |
⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 → ¬ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑎 ∈ dom 𝑆 → ¬ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 ) |
| 38 |
37
|
pm2.21d |
⊢ ( 𝑎 ∈ dom 𝑆 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 40 |
39
|
rgen2 |
⊢ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 41 |
|
simpl1 |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 42 |
|
simpl3l |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ) |
| 43 |
|
breq2 |
⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ) ) |
| 44 |
43
|
imbi1d |
⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 45 |
44
|
2ralbidv |
⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 46 |
42 45
|
syl |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 47 |
41 46
|
mpbird |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 48 |
|
simpl2l |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → 𝑐 ∈ dom 𝑆 ) |
| 49 |
|
simpl2r |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → 𝑑 ∈ dom 𝑆 ) |
| 50 |
|
simpl3r |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) |
| 51 |
|
simpr |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
| 52 |
1 2 3 4 5 6 47 48 49 50 51
|
efgredlem |
⊢ ¬ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
| 53 |
|
iman |
⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ↔ ¬ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) |
| 54 |
52 53
|
mpbir |
⊢ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
| 55 |
54
|
3expia |
⊢ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) |
| 56 |
55
|
expd |
⊢ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) |
| 57 |
56
|
ralrimivva |
⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ∀ 𝑐 ∈ dom 𝑆 ∀ 𝑑 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) |
| 58 |
|
2fveq3 |
⊢ ( 𝑐 = 𝑎 → ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( 𝑐 = 𝑎 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) |
| 60 |
|
fveqeq2 |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ↔ ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) ) ) |
| 61 |
|
fveq1 |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 62 |
61
|
eqeq1d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) |
| 63 |
60 62
|
imbi12d |
⊢ ( 𝑐 = 𝑎 → ( ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) |
| 64 |
59 63
|
imbi12d |
⊢ ( 𝑐 = 𝑎 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑑 = 𝑏 → ( 𝑆 ‘ 𝑑 ) = ( 𝑆 ‘ 𝑏 ) ) |
| 66 |
65
|
eqeq2d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) ↔ ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ) ) |
| 67 |
|
fveq1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 68 |
67
|
eqeq2d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 69 |
66 68
|
imbi12d |
⊢ ( 𝑑 = 𝑏 → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 70 |
69
|
imbi2d |
⊢ ( 𝑑 = 𝑏 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 71 |
64 70
|
cbvral2vw |
⊢ ( ∀ 𝑐 ∈ dom 𝑆 ∀ 𝑑 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 72 |
57 71
|
sylib |
⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 73 |
72
|
ancli |
⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 74 |
35
|
adantr |
⊢ ( ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 75 |
|
nn0leltp1 |
⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ≤ 𝑖 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ) ) |
| 76 |
|
nn0re |
⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℝ ) |
| 77 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
| 78 |
|
leloe |
⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ≤ 𝑖 ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 79 |
76 77 78
|
syl2an |
⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ≤ 𝑖 ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 80 |
75 79
|
bitr3d |
⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 81 |
80
|
ancoms |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 82 |
74 81
|
sylan2 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 83 |
82
|
imbi1d |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 84 |
|
jaob |
⊢ ( ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 85 |
83 84
|
bitrdi |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 86 |
85
|
2ralbidva |
⊢ ( 𝑖 ∈ ℕ0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 87 |
|
r19.26-2 |
⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ↔ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 88 |
86 87
|
bitrdi |
⊢ ( 𝑖 ∈ ℕ0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 89 |
73 88
|
imbitrrid |
⊢ ( 𝑖 ∈ ℕ0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 90 |
22 25 28 31 40 89
|
nn0ind |
⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ∈ ℕ0 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 91 |
19 90
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 92 |
17
|
nn0red |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 93 |
92
|
ltp1d |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ) |
| 94 |
|
2fveq3 |
⊢ ( 𝑎 = 𝐴 → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 95 |
94
|
breq1d |
⊢ ( 𝑎 = 𝐴 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ↔ ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ) ) |
| 96 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) ) ) |
| 97 |
|
fveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 98 |
97
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 99 |
96 98
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 100 |
95 99
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 101 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝐵 ) ) |
| 102 |
101
|
eqeq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) ) |
| 103 |
|
fveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 104 |
103
|
eqeq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| 105 |
102 104
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) ) |
| 106 |
105
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) ) ) |
| 107 |
100 106
|
rspc2v |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) ) ) |
| 108 |
91 93 107
|
mp2d |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| 109 |
108
|
3impia |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |