| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑗  =  0  →  ( 𝑗  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑗  =  0  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  =  ( 𝑀 ↑ ( 0  +  1 ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 0 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝑗  =  0  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 0 ) ) ) | 
						
							| 6 | 3 5 | breq12d | ⊢ ( 𝑗  =  0  →  ( ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  ↔  ( 𝑀 ↑ ( 0  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 0 ) ) ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑗  =  0  →  ( ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) ) )  ↔  ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 0  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 0 ) ) ) ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  =  ( 𝑀 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 𝑘 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) ) | 
						
							| 12 | 9 11 | breq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  ↔  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) ) )  ↔  ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  =  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ! ‘ 𝑗 )  =  ( ! ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 18 | 15 17 | breq12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  ↔  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) ) )  ↔  ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑗  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑗  =  𝑁  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  =  ( 𝑀 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑗  =  𝑁  →  ( ! ‘ 𝑗 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 24 | 21 23 | breq12d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) )  ↔  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑗  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑗 ) ) )  ↔  ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) ) | 
						
							| 26 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 27 |  | nnge1 | ⊢ ( 𝑀  ∈  ℕ  →  1  ≤  𝑀 ) | 
						
							| 28 |  | elnnuz | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 29 | 28 | biimpi | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 30 | 26 27 29 | leexp2ad | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ 1 )  ≤  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 31 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 32 | 31 | oveq2i | ⊢ ( 𝑀 ↑ ( 0  +  1 ) )  =  ( 𝑀 ↑ 1 ) | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 0  +  1 ) )  =  ( 𝑀 ↑ 1 ) ) | 
						
							| 34 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 35 | 34 | oveq2i | ⊢ ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 0 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  1 ) | 
						
							| 36 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 37 | 26 36 | reexpcld | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 38 | 37 | recnd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 39 | 38 | mulridd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑀 ↑ 𝑀 )  ·  1 )  =  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 40 | 35 39 | eqtrid | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 0 ) )  =  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 41 | 30 33 40 | 3brtr4d | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 0  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 0 ) ) ) | 
						
							| 42 | 26 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 43 |  | simpllr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 44 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 46 | 42 45 | reexpcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 47 | 36 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 48 | 42 47 | reexpcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑀 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 49 | 43 | faccld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 50 | 49 | nnred | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( ! ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 51 | 48 50 | remulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 52 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 53 |  | peano2re | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 54 | 43 52 53 | 3syl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 55 |  | nngt0 | ⊢ ( 𝑀  ∈  ℕ  →  0  <  𝑀 ) | 
						
							| 56 | 55 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  0  <  𝑀 ) | 
						
							| 57 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 58 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( 0  <  𝑀  →  0  ≤  𝑀 ) ) | 
						
							| 59 | 57 58 | mpan | ⊢ ( 𝑀  ∈  ℝ  →  ( 0  <  𝑀  →  0  ≤  𝑀 ) ) | 
						
							| 60 | 42 56 59 | sylc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  0  ≤  𝑀 ) | 
						
							| 61 | 42 45 60 | expge0d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  0  ≤  ( 𝑀 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) ) | 
						
							| 63 |  | simprr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  𝑀  ≤  ( 𝑘  +  1 ) ) | 
						
							| 64 | 46 51 42 54 61 60 62 63 | lemul12ad | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  ∧  ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ·  𝑀 )  ≤  ( ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 65 | 64 | anandis | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ·  𝑀 )  ≤  ( ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 66 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 67 |  | expp1 | ⊢ ( ( 𝑀  ∈  ℂ  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  =  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ·  𝑀 ) ) | 
						
							| 68 | 66 44 67 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  =  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ·  𝑀 ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  =  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ·  𝑀 ) ) | 
						
							| 70 |  | facp1 | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  1 ) )  =  ( ( ! ‘ 𝑘 )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ ( 𝑘  +  1 ) )  =  ( ( ! ‘ 𝑘 )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ( ! ‘ 𝑘 )  ·  ( 𝑘  +  1 ) ) ) ) | 
						
							| 73 | 38 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 74 |  | faccl | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 75 | 74 | nncnd | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 77 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 78 |  | peano2cn | ⊢ ( 𝑘  ∈  ℂ  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 79 | 77 78 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 81 | 73 76 80 | mulassd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ·  ( 𝑘  +  1 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ( ! ‘ 𝑘 )  ·  ( 𝑘  +  1 ) ) ) ) | 
						
							| 82 | 72 81 | eqtr4d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 84 | 65 69 83 | 3brtr4d | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  ∧  𝑀  ≤  ( 𝑘  +  1 ) ) )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 85 | 84 | exp32 | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 86 | 85 | com23 | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 87 |  | nn0ltp1le | ⊢ ( ( ( 𝑘  +  1 )  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  <  𝑀  ↔  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 ) ) | 
						
							| 88 | 44 36 87 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  <  𝑀  ↔  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 ) ) | 
						
							| 89 |  | peano2nn0 | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ0  →  ( ( 𝑘  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 90 | 44 89 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑘  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 91 |  | reexpcl | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( 𝑘  +  1 )  +  1 )  ∈  ℕ0 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ∈  ℝ ) | 
						
							| 92 | 26 90 91 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ∈  ℝ ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ∈  ℝ ) | 
						
							| 94 | 37 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( 𝑀 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 95 | 44 | faccld | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℕ ) | 
						
							| 96 | 95 | nnred | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 97 |  | remulcl | ⊢ ( ( ( 𝑀 ↑ 𝑀 )  ∈  ℝ  ∧  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 98 | 37 96 97 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 100 | 26 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 101 | 27 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  1  ≤  𝑀 ) | 
						
							| 102 |  | simpr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 ) | 
						
							| 103 | 90 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( ( 𝑘  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 104 | 103 | nn0zd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( ( 𝑘  +  1 )  +  1 )  ∈  ℤ ) | 
						
							| 105 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 106 | 105 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 107 |  | eluz | ⊢ ( ( ( ( 𝑘  +  1 )  +  1 )  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  ∈  ( ℤ≥ ‘ ( ( 𝑘  +  1 )  +  1 ) )  ↔  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 ) ) | 
						
							| 108 | 104 106 107 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( 𝑀  ∈  ( ℤ≥ ‘ ( ( 𝑘  +  1 )  +  1 ) )  ↔  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 ) ) | 
						
							| 109 | 102 108 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ ( ( 𝑘  +  1 )  +  1 ) ) ) | 
						
							| 110 | 100 101 109 | leexp2ad | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 111 | 37 96 | anim12i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀 ↑ 𝑀 )  ∈  ℝ  ∧  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) ) | 
						
							| 112 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 113 |  | id | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℕ0 ) | 
						
							| 114 |  | nn0ge0 | ⊢ ( 𝑀  ∈  ℕ0  →  0  ≤  𝑀 ) | 
						
							| 115 | 112 113 114 | expge0d | ⊢ ( 𝑀  ∈  ℕ0  →  0  ≤  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 116 | 36 115 | syl | ⊢ ( 𝑀  ∈  ℕ  →  0  ≤  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 117 | 95 | nnge1d | ⊢ ( 𝑘  ∈  ℕ0  →  1  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 118 | 116 117 | anim12i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 0  ≤  ( 𝑀 ↑ 𝑀 )  ∧  1  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 119 |  | lemulge11 | ⊢ ( ( ( ( 𝑀 ↑ 𝑀 )  ∈  ℝ  ∧  ( ! ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  ∧  ( 0  ≤  ( 𝑀 ↑ 𝑀 )  ∧  1  ≤  ( ! ‘ ( 𝑘  +  1 ) ) ) )  →  ( 𝑀 ↑ 𝑀 )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 120 | 111 118 119 | syl2anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀 ↑ 𝑀 )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( 𝑀 ↑ 𝑀 )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 122 | 93 94 99 110 121 | letrd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  ∧  ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀 )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 123 | 122 | ex | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  +  1 )  ≤  𝑀  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 124 | 88 123 | sylbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  <  𝑀  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 125 | 124 | a1dd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  <  𝑀  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 126 | 52 53 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 127 |  | lelttric | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  ∨  ( 𝑘  +  1 )  <  𝑀 ) ) | 
						
							| 128 | 26 126 127 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  ∨  ( 𝑘  +  1 )  <  𝑀 ) ) | 
						
							| 129 | 86 125 128 | mpjaod | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 130 | 129 | expcom | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑀  ∈  ℕ  →  ( ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) )  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 131 | 130 | a2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑘 ) ) )  →  ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( ( 𝑘  +  1 )  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 132 | 7 13 19 25 41 131 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 133 | 132 | impcom | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 134 |  | faccl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 135 | 134 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 136 | 135 | nn0ge0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 137 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 138 | 137 | 0expd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ↑ ( 𝑁  +  1 ) )  =  0 ) | 
						
							| 139 |  | 0exp0e1 | ⊢ ( 0 ↑ 0 )  =  1 | 
						
							| 140 | 139 | oveq1i | ⊢ ( ( 0 ↑ 0 )  ·  ( ! ‘ 𝑁 ) )  =  ( 1  ·  ( ! ‘ 𝑁 ) ) | 
						
							| 141 | 134 | nncnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 142 | 141 | mullidd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  ·  ( ! ‘ 𝑁 ) )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 143 | 140 142 | eqtrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 0 ↑ 0 )  ·  ( ! ‘ 𝑁 ) )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 144 | 136 138 143 | 3brtr4d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 0 ↑ 0 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 145 |  | oveq1 | ⊢ ( 𝑀  =  0  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  =  ( 0 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 146 |  | oveq12 | ⊢ ( ( 𝑀  =  0  ∧  𝑀  =  0 )  →  ( 𝑀 ↑ 𝑀 )  =  ( 0 ↑ 0 ) ) | 
						
							| 147 | 146 | anidms | ⊢ ( 𝑀  =  0  →  ( 𝑀 ↑ 𝑀 )  =  ( 0 ↑ 0 ) ) | 
						
							| 148 | 147 | oveq1d | ⊢ ( 𝑀  =  0  →  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) )  =  ( ( 0 ↑ 0 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 149 | 145 148 | breq12d | ⊢ ( 𝑀  =  0  →  ( ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) )  ↔  ( 0 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 0 ↑ 0 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 150 | 144 149 | imbitrrid | ⊢ ( 𝑀  =  0  →  ( 𝑁  ∈  ℕ0  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 151 | 150 | imp | ⊢ ( ( 𝑀  =  0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 152 | 133 151 | jaoian | ⊢ ( ( ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 153 | 1 152 | sylanb | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑁  +  1 ) )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑁 ) ) ) |