Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = ( 0 + 1 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑗 = 0 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 0 + 1 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( ! ‘ 𝑗 ) = ( ! ‘ 0 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑗 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) |
6 |
3 5
|
breq12d |
⊢ ( 𝑗 = 0 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 𝑘 + 1 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) |
12 |
9 11
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑘 + 1 ) + 1 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
18 |
15 17
|
breq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 𝑁 + 1 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑗 = 𝑁 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑁 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
24 |
21 23
|
breq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) ) |
26 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
27 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
28 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
29 |
28
|
biimpi |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
30 |
26 27 29
|
leexp2ad |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 1 ) ≤ ( 𝑀 ↑ 𝑀 ) ) |
31 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
32 |
31
|
oveq2i |
⊢ ( 𝑀 ↑ ( 0 + 1 ) ) = ( 𝑀 ↑ 1 ) |
33 |
32
|
a1i |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) = ( 𝑀 ↑ 1 ) ) |
34 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
35 |
34
|
oveq2i |
⊢ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) = ( ( 𝑀 ↑ 𝑀 ) · 1 ) |
36 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
37 |
26 36
|
reexpcld |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
39 |
38
|
mulid1d |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ 𝑀 ) · 1 ) = ( 𝑀 ↑ 𝑀 ) ) |
40 |
35 39
|
eqtrid |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) = ( 𝑀 ↑ 𝑀 ) ) |
41 |
30 33 40
|
3brtr4d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) |
42 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
43 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
44 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
45 |
43 44
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
46 |
42 45
|
reexpcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
47 |
36
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ℕ0 ) |
48 |
42 47
|
reexpcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
49 |
43
|
faccld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
50 |
49
|
nnred |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
51 |
48 50
|
remulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
52 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
53 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
54 |
43 52 53
|
3syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
55 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
56 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 < 𝑀 ) |
57 |
|
0re |
⊢ 0 ∈ ℝ |
58 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
59 |
57 58
|
mpan |
⊢ ( 𝑀 ∈ ℝ → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
60 |
42 56 59
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 ≤ 𝑀 ) |
61 |
42 45 60
|
expge0d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 ≤ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ) |
62 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) |
63 |
|
simprr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ≤ ( 𝑘 + 1 ) ) |
64 |
46 51 42 54 61 60 62 63
|
lemul12ad |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ≤ ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
65 |
64
|
anandis |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ≤ ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
66 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
67 |
|
expp1 |
⊢ ( ( 𝑀 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
68 |
66 44 67
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
70 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
71 |
70
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
72 |
71
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
73 |
38
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
74 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
75 |
74
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℂ ) |
76 |
75
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
77 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
78 |
|
peano2cn |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 1 ) ∈ ℂ ) |
79 |
77 78
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
80 |
79
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
81 |
73 76 80
|
mulassd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
82 |
72 81
|
eqtr4d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
84 |
65 69 83
|
3brtr4d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
85 |
84
|
exp32 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
86 |
85
|
com23 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
87 |
|
nn0ltp1le |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
88 |
44 36 87
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
89 |
|
peano2nn0 |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
90 |
44 89
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
91 |
|
reexpcl |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
92 |
26 90 91
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
93 |
92
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
94 |
37
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
95 |
44
|
faccld |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
96 |
95
|
nnred |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
97 |
|
remulcl |
⊢ ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
98 |
37 96 97
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
100 |
26
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
101 |
27
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 1 ≤ 𝑀 ) |
102 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) |
103 |
90
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
104 |
103
|
nn0zd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ∈ ℤ ) |
105 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
106 |
105
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℤ ) |
107 |
|
eluz |
⊢ ( ( ( ( 𝑘 + 1 ) + 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
108 |
104 106 107
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
109 |
102 108
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) |
110 |
100 101 109
|
leexp2ad |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( 𝑀 ↑ 𝑀 ) ) |
111 |
37 96
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) |
112 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
113 |
|
id |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) |
114 |
|
nn0ge0 |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 ) |
115 |
112 113 114
|
expge0d |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ ( 𝑀 ↑ 𝑀 ) ) |
116 |
36 115
|
syl |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ ( 𝑀 ↑ 𝑀 ) ) |
117 |
95
|
nnge1d |
⊢ ( 𝑘 ∈ ℕ0 → 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
118 |
116 117
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 0 ≤ ( 𝑀 ↑ 𝑀 ) ∧ 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
119 |
|
lemulge11 |
⊢ ( ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝑀 ↑ 𝑀 ) ∧ 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
120 |
111 118 119
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
122 |
93 94 99 110 121
|
letrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
123 |
122
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
124 |
88 123
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
125 |
124
|
a1dd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
126 |
52 53
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
127 |
|
lelttric |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∨ ( 𝑘 + 1 ) < 𝑀 ) ) |
128 |
26 126 127
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∨ ( 𝑘 + 1 ) < 𝑀 ) ) |
129 |
86 125 128
|
mpjaod |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
130 |
129
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
131 |
130
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) → ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
132 |
7 13 19 25 41 131
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
133 |
132
|
impcom |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
134 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
135 |
134
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ0 ) |
136 |
135
|
nn0ge0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑁 ) ) |
137 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
138 |
137
|
0expd |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ ( 𝑁 + 1 ) ) = 0 ) |
139 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
140 |
139
|
oveq1i |
⊢ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) = ( 1 · ( ! ‘ 𝑁 ) ) |
141 |
134
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
142 |
141
|
mulid2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
143 |
140 142
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
144 |
136 138 143
|
3brtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) |
145 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑁 + 1 ) ) = ( 0 ↑ ( 𝑁 + 1 ) ) ) |
146 |
|
oveq12 |
⊢ ( ( 𝑀 = 0 ∧ 𝑀 = 0 ) → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) |
147 |
146
|
anidms |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) |
148 |
147
|
oveq1d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) = ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) |
149 |
145 148
|
breq12d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ↔ ( 0 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) ) |
150 |
144 149
|
syl5ibr |
⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ0 → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
151 |
150
|
imp |
⊢ ( ( 𝑀 = 0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
152 |
133 151
|
jaoian |
⊢ ( ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
153 |
1 152
|
sylanb |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |