Metamath Proof Explorer


Theorem fin1a2lem7

Description: Lemma for fin1a2 . Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypotheses fin1a2lem.b 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) )
fin1a2lem.aa 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 )
Assertion fin1a2lem7 ( ( 𝐴𝑉 ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII )

Proof

Step Hyp Ref Expression
1 fin1a2lem.b 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) )
2 fin1a2lem.aa 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 )
3 peano1 ∅ ∈ ω
4 ne0i ( ∅ ∈ ω → ω ≠ ∅ )
5 brwdomn0 ( ω ≠ ∅ → ( ω ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴onto→ ω ) )
6 3 4 5 mp2b ( ω ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴onto→ ω )
7 vex 𝑓 ∈ V
8 fof ( 𝑓 : 𝐴onto→ ω → 𝑓 : 𝐴 ⟶ ω )
9 dmfex ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐴 ⟶ ω ) → 𝐴 ∈ V )
10 7 8 9 sylancr ( 𝑓 : 𝐴onto→ ω → 𝐴 ∈ V )
11 cnvimass ( 𝑓 “ ran 𝐸 ) ⊆ dom 𝑓
12 11 8 fssdm ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ran 𝐸 ) ⊆ 𝐴 )
13 10 12 sselpwd ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ran 𝐸 ) ∈ 𝒫 𝐴 )
14 1 fin1a2lem4 𝐸 : ω –1-1→ ω
15 f1cnv ( 𝐸 : ω –1-1→ ω → 𝐸 : ran 𝐸1-1-onto→ ω )
16 f1ofo ( 𝐸 : ran 𝐸1-1-onto→ ω → 𝐸 : ran 𝐸onto→ ω )
17 14 15 16 mp2b 𝐸 : ran 𝐸onto→ ω
18 fofun ( 𝐸 : ran 𝐸onto→ ω → Fun 𝐸 )
19 17 18 ax-mp Fun 𝐸
20 7 resex ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ∈ V
21 cofunexg ( ( Fun 𝐸 ∧ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ∈ V ) → ( 𝐸 ∘ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ) ∈ V )
22 19 20 21 mp2an ( 𝐸 ∘ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ) ∈ V
23 fofun ( 𝑓 : 𝐴onto→ ω → Fun 𝑓 )
24 fores ( ( Fun 𝑓 ∧ ( 𝑓 “ ran 𝐸 ) ⊆ dom 𝑓 ) → ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) )
25 23 11 24 sylancl ( 𝑓 : 𝐴onto→ ω → ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) )
26 f1f ( 𝐸 : ω –1-1→ ω → 𝐸 : ω ⟶ ω )
27 frn ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ ω )
28 14 26 27 mp2b ran 𝐸 ⊆ ω
29 foimacnv ( ( 𝑓 : 𝐴onto→ ω ∧ ran 𝐸 ⊆ ω ) → ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) = ran 𝐸 )
30 28 29 mpan2 ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) = ran 𝐸 )
31 foeq3 ( ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) = ran 𝐸 → ( ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) ↔ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) )
32 30 31 syl ( 𝑓 : 𝐴onto→ ω → ( ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( 𝑓 “ ran 𝐸 ) ) ↔ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) )
33 25 32 mpbid ( 𝑓 : 𝐴onto→ ω → ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 )
34 foco ( ( 𝐸 : ran 𝐸onto→ ω ∧ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) → ( 𝐸 ∘ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ω )
35 17 33 34 sylancr ( 𝑓 : 𝐴onto→ ω → ( 𝐸 ∘ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ω )
36 fowdom ( ( ( 𝐸 ∘ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ) ∈ V ∧ ( 𝐸 ∘ ( 𝑓 ↾ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝑓 “ ran 𝐸 ) –onto→ ω ) → ω ≼* ( 𝑓 “ ran 𝐸 ) )
37 22 35 36 sylancr ( 𝑓 : 𝐴onto→ ω → ω ≼* ( 𝑓 “ ran 𝐸 ) )
38 7 cnvex 𝑓 ∈ V
39 38 imaex ( 𝑓 “ ran 𝐸 ) ∈ V
40 isfin3-2 ( ( 𝑓 “ ran 𝐸 ) ∈ V → ( ( 𝑓 “ ran 𝐸 ) ∈ FinIII ↔ ¬ ω ≼* ( 𝑓 “ ran 𝐸 ) ) )
41 39 40 ax-mp ( ( 𝑓 “ ran 𝐸 ) ∈ FinIII ↔ ¬ ω ≼* ( 𝑓 “ ran 𝐸 ) )
42 41 con2bii ( ω ≼* ( 𝑓 “ ran 𝐸 ) ↔ ¬ ( 𝑓 “ ran 𝐸 ) ∈ FinIII )
43 37 42 sylib ( 𝑓 : 𝐴onto→ ω → ¬ ( 𝑓 “ ran 𝐸 ) ∈ FinIII )
44 1 2 fin1a2lem6 ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸1-1-onto→ ( ω ∖ ran 𝐸 )
45 f1ocnv ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸1-1-onto→ ( ω ∖ ran 𝐸 ) → ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –1-1-onto→ ran 𝐸 )
46 f1ofo ( ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –1-1-onto→ ran 𝐸 ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 )
47 44 45 46 mp2b ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸
48 foco ( ( 𝐸 : ran 𝐸onto→ ω ∧ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 ) → ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω )
49 17 47 48 mp2an ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω
50 fofun ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω → Fun ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) )
51 49 50 ax-mp Fun ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) )
52 7 resex ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ∈ V
53 cofunexg ( ( Fun ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∧ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ∈ V ) → ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ) ∈ V )
54 51 52 53 mp2an ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ) ∈ V
55 difss ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ⊆ 𝐴
56 8 fdmd ( 𝑓 : 𝐴onto→ ω → dom 𝑓 = 𝐴 )
57 55 56 sseqtrrid ( 𝑓 : 𝐴onto→ ω → ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ⊆ dom 𝑓 )
58 fores ( ( Fun 𝑓 ∧ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ⊆ dom 𝑓 ) → ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) )
59 23 57 58 syl2anc ( 𝑓 : 𝐴onto→ ω → ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) )
60 funcnvcnv ( Fun 𝑓 → Fun 𝑓 )
61 imadif ( Fun 𝑓 → ( 𝑓 “ ( ω ∖ ran 𝐸 ) ) = ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ ran 𝐸 ) ) )
62 23 60 61 3syl ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ( ω ∖ ran 𝐸 ) ) = ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ ran 𝐸 ) ) )
63 62 imaeq2d ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ( 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( 𝑓 “ ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ ran 𝐸 ) ) ) )
64 difss ( ω ∖ ran 𝐸 ) ⊆ ω
65 foimacnv ( ( 𝑓 : 𝐴onto→ ω ∧ ( ω ∖ ran 𝐸 ) ⊆ ω ) → ( 𝑓 “ ( 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) )
66 64 65 mpan2 ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ( 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) )
67 fimacnv ( 𝑓 : 𝐴 ⟶ ω → ( 𝑓 “ ω ) = 𝐴 )
68 8 67 syl ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ω ) = 𝐴 )
69 68 difeq1d ( 𝑓 : 𝐴onto→ ω → ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ ran 𝐸 ) ) = ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) )
70 69 imaeq2d ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ ran 𝐸 ) ) ) = ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) )
71 63 66 70 3eqtr3rd ( 𝑓 : 𝐴onto→ ω → ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) )
72 foeq3 ( ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ↔ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) )
73 71 72 syl ( 𝑓 : 𝐴onto→ ω → ( ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ↔ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) )
74 59 73 mpbid ( 𝑓 : 𝐴onto→ ω → ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) )
75 foco ( ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω ∧ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) → ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ω )
76 49 74 75 sylancr ( 𝑓 : 𝐴onto→ ω → ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ω )
77 fowdom ( ( ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ) ∈ V ∧ ( ( 𝐸 ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) –onto→ ω ) → ω ≼* ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) )
78 54 76 77 sylancr ( 𝑓 : 𝐴onto→ ω → ω ≼* ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) )
79 difexg ( 𝐴 ∈ V → ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ V )
80 isfin3-2 ( ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ V → ( ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ↔ ¬ ω ≼* ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) )
81 10 79 80 3syl ( 𝑓 : 𝐴onto→ ω → ( ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ↔ ¬ ω ≼* ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ) )
82 81 con2bid ( 𝑓 : 𝐴onto→ ω → ( ω ≼* ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ↔ ¬ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) )
83 78 82 mpbid ( 𝑓 : 𝐴onto→ ω → ¬ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII )
84 eleq1 ( 𝑦 = ( 𝑓 “ ran 𝐸 ) → ( 𝑦 ∈ FinIII ↔ ( 𝑓 “ ran 𝐸 ) ∈ FinIII ) )
85 difeq2 ( 𝑦 = ( 𝑓 “ ran 𝐸 ) → ( 𝐴𝑦 ) = ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) )
86 85 eleq1d ( 𝑦 = ( 𝑓 “ ran 𝐸 ) → ( ( 𝐴𝑦 ) ∈ FinIII ↔ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) )
87 84 86 orbi12d ( 𝑦 = ( 𝑓 “ ran 𝐸 ) → ( ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) ↔ ( ( 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) )
88 87 notbid ( 𝑦 = ( 𝑓 “ ran 𝐸 ) → ( ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) ↔ ¬ ( ( 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) )
89 ioran ( ¬ ( ( 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ↔ ( ¬ ( 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) )
90 88 89 bitrdi ( 𝑦 = ( 𝑓 “ ran 𝐸 ) → ( ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) ↔ ( ¬ ( 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) )
91 90 rspcev ( ( ( 𝑓 “ ran 𝐸 ) ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) → ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) )
92 13 43 83 91 syl12anc ( 𝑓 : 𝐴onto→ ω → ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) )
93 rexnal ( ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) ↔ ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) )
94 92 93 sylib ( 𝑓 : 𝐴onto→ ω → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) )
95 94 exlimiv ( ∃ 𝑓 𝑓 : 𝐴onto→ ω → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) )
96 6 95 sylbi ( ω ≼* 𝐴 → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) )
97 96 con2i ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) → ¬ ω ≼* 𝐴 )
98 isfin3-2 ( 𝐴𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) )
99 97 98 syl5ibr ( 𝐴𝑉 → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) → 𝐴 ∈ FinIII ) )
100 99 imp ( ( 𝐴𝑉 ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴𝑦 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII )