Metamath Proof Explorer


Theorem fin1a2lem7

Description: Lemma for fin1a2 . Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypotheses fin1a2lem.b E = x ω 2 𝑜 𝑜 x
fin1a2lem.aa S = x On suc x
Assertion fin1a2lem7 A V y 𝒫 A y FinIII A y FinIII A FinIII

Proof

Step Hyp Ref Expression
1 fin1a2lem.b E = x ω 2 𝑜 𝑜 x
2 fin1a2lem.aa S = x On suc x
3 peano1 ω
4 ne0i ω ω
5 brwdomn0 ω ω * A f f : A onto ω
6 3 4 5 mp2b ω * A f f : A onto ω
7 vex f V
8 fof f : A onto ω f : A ω
9 dmfex f V f : A ω A V
10 7 8 9 sylancr f : A onto ω A V
11 cnvimass f -1 ran E dom f
12 11 8 fssdm f : A onto ω f -1 ran E A
13 10 12 sselpwd f : A onto ω f -1 ran E 𝒫 A
14 1 fin1a2lem4 E : ω 1-1 ω
15 f1cnv E : ω 1-1 ω E -1 : ran E 1-1 onto ω
16 f1ofo E -1 : ran E 1-1 onto ω E -1 : ran E onto ω
17 14 15 16 mp2b E -1 : ran E onto ω
18 fofun E -1 : ran E onto ω Fun E -1
19 17 18 ax-mp Fun E -1
20 7 resex f f -1 ran E V
21 cofunexg Fun E -1 f f -1 ran E V E -1 f f -1 ran E V
22 19 20 21 mp2an E -1 f f -1 ran E V
23 fofun f : A onto ω Fun f
24 fores Fun f f -1 ran E dom f f f -1 ran E : f -1 ran E onto f f -1 ran E
25 23 11 24 sylancl f : A onto ω f f -1 ran E : f -1 ran E onto f f -1 ran E
26 f1f E : ω 1-1 ω E : ω ω
27 frn E : ω ω ran E ω
28 14 26 27 mp2b ran E ω
29 foimacnv f : A onto ω ran E ω f f -1 ran E = ran E
30 28 29 mpan2 f : A onto ω f f -1 ran E = ran E
31 foeq3 f f -1 ran E = ran E f f -1 ran E : f -1 ran E onto f f -1 ran E f f -1 ran E : f -1 ran E onto ran E
32 30 31 syl f : A onto ω f f -1 ran E : f -1 ran E onto f f -1 ran E f f -1 ran E : f -1 ran E onto ran E
33 25 32 mpbid f : A onto ω f f -1 ran E : f -1 ran E onto ran E
34 foco E -1 : ran E onto ω f f -1 ran E : f -1 ran E onto ran E E -1 f f -1 ran E : f -1 ran E onto ω
35 17 33 34 sylancr f : A onto ω E -1 f f -1 ran E : f -1 ran E onto ω
36 fowdom E -1 f f -1 ran E V E -1 f f -1 ran E : f -1 ran E onto ω ω * f -1 ran E
37 22 35 36 sylancr f : A onto ω ω * f -1 ran E
38 7 cnvex f -1 V
39 38 imaex f -1 ran E V
40 isfin3-2 f -1 ran E V f -1 ran E FinIII ¬ ω * f -1 ran E
41 39 40 ax-mp f -1 ran E FinIII ¬ ω * f -1 ran E
42 41 con2bii ω * f -1 ran E ¬ f -1 ran E FinIII
43 37 42 sylib f : A onto ω ¬ f -1 ran E FinIII
44 1 2 fin1a2lem6 S ran E : ran E 1-1 onto ω ran E
45 f1ocnv S ran E : ran E 1-1 onto ω ran E S ran E -1 : ω ran E 1-1 onto ran E
46 f1ofo S ran E -1 : ω ran E 1-1 onto ran E S ran E -1 : ω ran E onto ran E
47 44 45 46 mp2b S ran E -1 : ω ran E onto ran E
48 foco E -1 : ran E onto ω S ran E -1 : ω ran E onto ran E E -1 S ran E -1 : ω ran E onto ω
49 17 47 48 mp2an E -1 S ran E -1 : ω ran E onto ω
50 fofun E -1 S ran E -1 : ω ran E onto ω Fun E -1 S ran E -1
51 49 50 ax-mp Fun E -1 S ran E -1
52 7 resex f A f -1 ran E V
53 cofunexg Fun E -1 S ran E -1 f A f -1 ran E V E -1 S ran E -1 f A f -1 ran E V
54 51 52 53 mp2an E -1 S ran E -1 f A f -1 ran E V
55 difss A f -1 ran E A
56 8 fdmd f : A onto ω dom f = A
57 55 56 sseqtrrid f : A onto ω A f -1 ran E dom f
58 fores Fun f A f -1 ran E dom f f A f -1 ran E : A f -1 ran E onto f A f -1 ran E
59 23 57 58 syl2anc f : A onto ω f A f -1 ran E : A f -1 ran E onto f A f -1 ran E
60 funcnvcnv Fun f Fun f -1 -1
61 imadif Fun f -1 -1 f -1 ω ran E = f -1 ω f -1 ran E
62 23 60 61 3syl f : A onto ω f -1 ω ran E = f -1 ω f -1 ran E
63 62 imaeq2d f : A onto ω f f -1 ω ran E = f f -1 ω f -1 ran E
64 difss ω ran E ω
65 foimacnv f : A onto ω ω ran E ω f f -1 ω ran E = ω ran E
66 64 65 mpan2 f : A onto ω f f -1 ω ran E = ω ran E
67 fimacnv f : A ω f -1 ω = A
68 8 67 syl f : A onto ω f -1 ω = A
69 68 difeq1d f : A onto ω f -1 ω f -1 ran E = A f -1 ran E
70 69 imaeq2d f : A onto ω f f -1 ω f -1 ran E = f A f -1 ran E
71 63 66 70 3eqtr3rd f : A onto ω f A f -1 ran E = ω ran E
72 foeq3 f A f -1 ran E = ω ran E f A f -1 ran E : A f -1 ran E onto f A f -1 ran E f A f -1 ran E : A f -1 ran E onto ω ran E
73 71 72 syl f : A onto ω f A f -1 ran E : A f -1 ran E onto f A f -1 ran E f A f -1 ran E : A f -1 ran E onto ω ran E
74 59 73 mpbid f : A onto ω f A f -1 ran E : A f -1 ran E onto ω ran E
75 foco E -1 S ran E -1 : ω ran E onto ω f A f -1 ran E : A f -1 ran E onto ω ran E E -1 S ran E -1 f A f -1 ran E : A f -1 ran E onto ω
76 49 74 75 sylancr f : A onto ω E -1 S ran E -1 f A f -1 ran E : A f -1 ran E onto ω
77 fowdom E -1 S ran E -1 f A f -1 ran E V E -1 S ran E -1 f A f -1 ran E : A f -1 ran E onto ω ω * A f -1 ran E
78 54 76 77 sylancr f : A onto ω ω * A f -1 ran E
79 difexg A V A f -1 ran E V
80 isfin3-2 A f -1 ran E V A f -1 ran E FinIII ¬ ω * A f -1 ran E
81 10 79 80 3syl f : A onto ω A f -1 ran E FinIII ¬ ω * A f -1 ran E
82 81 con2bid f : A onto ω ω * A f -1 ran E ¬ A f -1 ran E FinIII
83 78 82 mpbid f : A onto ω ¬ A f -1 ran E FinIII
84 eleq1 y = f -1 ran E y FinIII f -1 ran E FinIII
85 difeq2 y = f -1 ran E A y = A f -1 ran E
86 85 eleq1d y = f -1 ran E A y FinIII A f -1 ran E FinIII
87 84 86 orbi12d y = f -1 ran E y FinIII A y FinIII f -1 ran E FinIII A f -1 ran E FinIII
88 87 notbid y = f -1 ran E ¬ y FinIII A y FinIII ¬ f -1 ran E FinIII A f -1 ran E FinIII
89 ioran ¬ f -1 ran E FinIII A f -1 ran E FinIII ¬ f -1 ran E FinIII ¬ A f -1 ran E FinIII
90 88 89 bitrdi y = f -1 ran E ¬ y FinIII A y FinIII ¬ f -1 ran E FinIII ¬ A f -1 ran E FinIII
91 90 rspcev f -1 ran E 𝒫 A ¬ f -1 ran E FinIII ¬ A f -1 ran E FinIII y 𝒫 A ¬ y FinIII A y FinIII
92 13 43 83 91 syl12anc f : A onto ω y 𝒫 A ¬ y FinIII A y FinIII
93 rexnal y 𝒫 A ¬ y FinIII A y FinIII ¬ y 𝒫 A y FinIII A y FinIII
94 92 93 sylib f : A onto ω ¬ y 𝒫 A y FinIII A y FinIII
95 94 exlimiv f f : A onto ω ¬ y 𝒫 A y FinIII A y FinIII
96 6 95 sylbi ω * A ¬ y 𝒫 A y FinIII A y FinIII
97 96 con2i y 𝒫 A y FinIII A y FinIII ¬ ω * A
98 isfin3-2 A V A FinIII ¬ ω * A
99 97 98 syl5ibr A V y 𝒫 A y FinIII A y FinIII A FinIII
100 99 imp A V y 𝒫 A y FinIII A y FinIII A FinIII