Metamath Proof Explorer


Theorem fineqvnttrclselem2

Description: Lemma for fineqvnttrclse . (Contributed by BTernaryTau, 12-Jan-2026)

Ref Expression
Hypothesis fineqvnttrclselem2.1 𝐹 = ( 𝑣 ∈ suc suc 𝑁 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } )
Assertion fineqvnttrclselem2 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 +o ( 𝐹𝐴 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fineqvnttrclselem2.1 𝐹 = ( 𝑣 ∈ suc suc 𝑁 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } )
2 eldifi ( 𝐵 ∈ ( ω ∖ 1o ) → 𝐵 ∈ ω )
3 elnn ( ( 𝑁𝐵𝐵 ∈ ω ) → 𝑁 ∈ ω )
4 3 ancoms ( ( 𝐵 ∈ ω ∧ 𝑁𝐵 ) → 𝑁 ∈ ω )
5 2 4 sylan ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵 ) → 𝑁 ∈ ω )
6 5 3adant3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → 𝑁 ∈ ω )
7 oveq1 ( 𝑣 = 𝐴 → ( 𝑣 +o 𝑑 ) = ( 𝐴 +o 𝑑 ) )
8 7 eqeq1d ( 𝑣 = 𝐴 → ( ( 𝑣 +o 𝑑 ) = 𝐵 ↔ ( 𝐴 +o 𝑑 ) = 𝐵 ) )
9 8 rabbidv ( 𝑣 = 𝐴 → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
10 9 unieqd ( 𝑣 = 𝐴 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
11 simp3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ suc suc 𝑁 )
12 fineqvnttrclselem1 ( 𝐵 ∈ ( ω ∖ 1o ) → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω )
13 12 3ad2ant1 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁 ) → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω )
14 1 10 11 13 fvmptd3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐹𝐴 ) = { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
15 6 14 syld3an2 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( 𝐹𝐴 ) = { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
16 nnon ( 𝐵 ∈ ω → 𝐵 ∈ On )
17 2 16 syl ( 𝐵 ∈ ( ω ∖ 1o ) → 𝐵 ∈ On )
18 onelon ( ( 𝐵 ∈ On ∧ 𝑁𝐵 ) → 𝑁 ∈ On )
19 onsuc ( 𝑁 ∈ On → suc 𝑁 ∈ On )
20 18 19 syl ( ( 𝐵 ∈ On ∧ 𝑁𝐵 ) → suc 𝑁 ∈ On )
21 17 20 sylan ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵 ) → suc 𝑁 ∈ On )
22 onsuc ( suc 𝑁 ∈ On → suc suc 𝑁 ∈ On )
23 onelon ( ( suc suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ On )
24 22 23 sylan ( ( suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ On )
25 21 24 stoic3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ On )
26 17 3ad2ant1 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → 𝐵 ∈ On )
27 simp3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ suc suc 𝑁 )
28 simpl ( ( suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → suc 𝑁 ∈ On )
29 24 28 jca ( ( suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 ∈ On ∧ suc 𝑁 ∈ On ) )
30 21 29 stoic3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 ∈ On ∧ suc 𝑁 ∈ On ) )
31 onsssuc ( ( 𝐴 ∈ On ∧ suc 𝑁 ∈ On ) → ( 𝐴 ⊆ suc 𝑁𝐴 ∈ suc suc 𝑁 ) )
32 30 31 syl ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 ⊆ suc 𝑁𝐴 ∈ suc suc 𝑁 ) )
33 27 32 mpbird ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → 𝐴 ⊆ suc 𝑁 )
34 nnord ( 𝐵 ∈ ω → Ord 𝐵 )
35 ordsucss ( Ord 𝐵 → ( 𝑁𝐵 → suc 𝑁𝐵 ) )
36 2 34 35 3syl ( 𝐵 ∈ ( ω ∖ 1o ) → ( 𝑁𝐵 → suc 𝑁𝐵 ) )
37 36 imp ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵 ) → suc 𝑁𝐵 )
38 37 3adant3 ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → suc 𝑁𝐵 )
39 33 38 sstrd ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → 𝐴𝐵 )
40 oawordeu ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 )
41 25 26 39 40 syl21anc ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 )
42 reusn ( ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ↔ ∃ 𝑥 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } )
43 unieq ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } )
44 unisnv { 𝑥 } = 𝑥
45 43 44 eqtrdi ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = 𝑥 )
46 vsnid 𝑥 ∈ { 𝑥 }
47 eleq2 ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → ( 𝑥 ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ↔ 𝑥 ∈ { 𝑥 } ) )
48 46 47 mpbiri ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → 𝑥 ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
49 45 48 eqeltrd ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
50 49 exlimiv ( ∃ 𝑥 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
51 42 50 sylbi ( ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
52 41 51 syl ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
53 15 52 eqeltrd ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( 𝐹𝐴 ) ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } )
54 oveq2 ( 𝑑 = ( 𝐹𝐴 ) → ( 𝐴 +o 𝑑 ) = ( 𝐴 +o ( 𝐹𝐴 ) ) )
55 54 eqeq1d ( 𝑑 = ( 𝐹𝐴 ) → ( ( 𝐴 +o 𝑑 ) = 𝐵 ↔ ( 𝐴 +o ( 𝐹𝐴 ) ) = 𝐵 ) )
56 55 elrab ( ( 𝐹𝐴 ) ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ↔ ( ( 𝐹𝐴 ) ∈ On ∧ ( 𝐴 +o ( 𝐹𝐴 ) ) = 𝐵 ) )
57 53 56 sylib ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( ( 𝐹𝐴 ) ∈ On ∧ ( 𝐴 +o ( 𝐹𝐴 ) ) = 𝐵 ) )
58 57 simprd ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁𝐵𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 +o ( 𝐹𝐴 ) ) = 𝐵 )