| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvnttrclselem2.1 |
⊢ 𝐹 = ( 𝑣 ∈ suc suc 𝑁 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } ) |
| 2 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → 𝐵 ∈ ω ) |
| 3 |
|
elnn |
⊢ ( ( 𝑁 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑁 ∈ ω ) |
| 4 |
3
|
ancoms |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑁 ∈ 𝐵 ) → 𝑁 ∈ ω ) |
| 5 |
2 4
|
sylan |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → 𝑁 ∈ ω ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝑁 ∈ ω ) |
| 7 |
|
oveq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 +o 𝑑 ) = ( 𝐴 +o 𝑑 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑣 +o 𝑑 ) = 𝐵 ↔ ( 𝐴 +o 𝑑 ) = 𝐵 ) ) |
| 9 |
8
|
rabbidv |
⊢ ( 𝑣 = 𝐴 → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 10 |
9
|
unieqd |
⊢ ( 𝑣 = 𝐴 → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 11 |
|
simp3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ suc suc 𝑁 ) |
| 12 |
|
fineqvnttrclselem1 |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁 ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 14 |
1 10 11 13
|
fvmptd3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 15 |
6 14
|
syld3an2 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 16 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 17 |
2 16
|
syl |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → 𝐵 ∈ On ) |
| 18 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑁 ∈ 𝐵 ) → 𝑁 ∈ On ) |
| 19 |
|
onsuc |
⊢ ( 𝑁 ∈ On → suc 𝑁 ∈ On ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑁 ∈ 𝐵 ) → suc 𝑁 ∈ On ) |
| 21 |
17 20
|
sylan |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → suc 𝑁 ∈ On ) |
| 22 |
|
onsuc |
⊢ ( suc 𝑁 ∈ On → suc suc 𝑁 ∈ On ) |
| 23 |
|
onelon |
⊢ ( ( suc suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ On ) |
| 24 |
22 23
|
sylan |
⊢ ( ( suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ On ) |
| 25 |
21 24
|
stoic3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ On ) |
| 26 |
17
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐵 ∈ On ) |
| 27 |
|
simp3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ∈ suc suc 𝑁 ) |
| 28 |
|
simpl |
⊢ ( ( suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → suc 𝑁 ∈ On ) |
| 29 |
24 28
|
jca |
⊢ ( ( suc 𝑁 ∈ On ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 ∈ On ∧ suc 𝑁 ∈ On ) ) |
| 30 |
21 29
|
stoic3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 ∈ On ∧ suc 𝑁 ∈ On ) ) |
| 31 |
|
onsssuc |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝑁 ∈ On ) → ( 𝐴 ⊆ suc 𝑁 ↔ 𝐴 ∈ suc suc 𝑁 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 ⊆ suc 𝑁 ↔ 𝐴 ∈ suc suc 𝑁 ) ) |
| 33 |
27 32
|
mpbird |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ⊆ suc 𝑁 ) |
| 34 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
| 35 |
|
ordsucss |
⊢ ( Ord 𝐵 → ( 𝑁 ∈ 𝐵 → suc 𝑁 ⊆ 𝐵 ) ) |
| 36 |
2 34 35
|
3syl |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ( 𝑁 ∈ 𝐵 → suc 𝑁 ⊆ 𝐵 ) ) |
| 37 |
36
|
imp |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → suc 𝑁 ⊆ 𝐵 ) |
| 38 |
37
|
3adant3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → suc 𝑁 ⊆ 𝐵 ) |
| 39 |
33 38
|
sstrd |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → 𝐴 ⊆ 𝐵 ) |
| 40 |
|
oawordeu |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 41 |
25 26 39 40
|
syl21anc |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 42 |
|
reusn |
⊢ ( ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ↔ ∃ 𝑥 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } ) |
| 43 |
|
unieq |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = ∪ { 𝑥 } ) |
| 44 |
|
unisnv |
⊢ ∪ { 𝑥 } = 𝑥 |
| 45 |
43 44
|
eqtrdi |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = 𝑥 ) |
| 46 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
| 47 |
|
eleq2 |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → ( 𝑥 ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ↔ 𝑥 ∈ { 𝑥 } ) ) |
| 48 |
46 47
|
mpbiri |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → 𝑥 ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 49 |
45 48
|
eqeltrd |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 50 |
49
|
exlimiv |
⊢ ( ∃ 𝑥 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑥 } → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 51 |
42 50
|
sylbi |
⊢ ( ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 52 |
41 51
|
syl |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 53 |
15 52
|
eqeltrd |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ) |
| 54 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝐹 ‘ 𝐴 ) → ( 𝐴 +o 𝑑 ) = ( 𝐴 +o ( 𝐹 ‘ 𝐴 ) ) ) |
| 55 |
54
|
eqeq1d |
⊢ ( 𝑑 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐴 +o 𝑑 ) = 𝐵 ↔ ( 𝐴 +o ( 𝐹 ‘ 𝐴 ) ) = 𝐵 ) ) |
| 56 |
55
|
elrab |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ On ∧ ( 𝐴 +o ( 𝐹 ‘ 𝐴 ) ) = 𝐵 ) ) |
| 57 |
53 56
|
sylib |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ On ∧ ( 𝐴 +o ( 𝐹 ‘ 𝐴 ) ) = 𝐵 ) ) |
| 58 |
57
|
simprd |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁 ) → ( 𝐴 +o ( 𝐹 ‘ 𝐴 ) ) = 𝐵 ) |