Metamath Proof Explorer


Theorem fineqvnttrclselem2

Description: Lemma for fineqvnttrclse . (Contributed by BTernaryTau, 12-Jan-2026)

Ref Expression
Hypothesis fineqvnttrclselem2.1 F = v suc suc N d On | v + 𝑜 d = B
Assertion fineqvnttrclselem2 B ω 1 𝑜 N B A suc suc N A + 𝑜 F A = B

Proof

Step Hyp Ref Expression
1 fineqvnttrclselem2.1 F = v suc suc N d On | v + 𝑜 d = B
2 eldifi B ω 1 𝑜 B ω
3 elnn N B B ω N ω
4 3 ancoms B ω N B N ω
5 2 4 sylan B ω 1 𝑜 N B N ω
6 5 3adant3 B ω 1 𝑜 N B A suc suc N N ω
7 oveq1 v = A v + 𝑜 d = A + 𝑜 d
8 7 eqeq1d v = A v + 𝑜 d = B A + 𝑜 d = B
9 8 rabbidv v = A d On | v + 𝑜 d = B = d On | A + 𝑜 d = B
10 9 unieqd v = A d On | v + 𝑜 d = B = d On | A + 𝑜 d = B
11 simp3 B ω 1 𝑜 N ω A suc suc N A suc suc N
12 fineqvnttrclselem1 B ω 1 𝑜 d On | A + 𝑜 d = B ω
13 12 3ad2ant1 B ω 1 𝑜 N ω A suc suc N d On | A + 𝑜 d = B ω
14 1 10 11 13 fvmptd3 B ω 1 𝑜 N ω A suc suc N F A = d On | A + 𝑜 d = B
15 6 14 syld3an2 B ω 1 𝑜 N B A suc suc N F A = d On | A + 𝑜 d = B
16 nnon B ω B On
17 2 16 syl B ω 1 𝑜 B On
18 onelon B On N B N On
19 onsuc N On suc N On
20 18 19 syl B On N B suc N On
21 17 20 sylan B ω 1 𝑜 N B suc N On
22 onsuc suc N On suc suc N On
23 onelon suc suc N On A suc suc N A On
24 22 23 sylan suc N On A suc suc N A On
25 21 24 stoic3 B ω 1 𝑜 N B A suc suc N A On
26 17 3ad2ant1 B ω 1 𝑜 N B A suc suc N B On
27 simp3 B ω 1 𝑜 N B A suc suc N A suc suc N
28 simpl suc N On A suc suc N suc N On
29 24 28 jca suc N On A suc suc N A On suc N On
30 21 29 stoic3 B ω 1 𝑜 N B A suc suc N A On suc N On
31 onsssuc A On suc N On A suc N A suc suc N
32 30 31 syl B ω 1 𝑜 N B A suc suc N A suc N A suc suc N
33 27 32 mpbird B ω 1 𝑜 N B A suc suc N A suc N
34 nnord B ω Ord B
35 ordsucss Ord B N B suc N B
36 2 34 35 3syl B ω 1 𝑜 N B suc N B
37 36 imp B ω 1 𝑜 N B suc N B
38 37 3adant3 B ω 1 𝑜 N B A suc suc N suc N B
39 33 38 sstrd B ω 1 𝑜 N B A suc suc N A B
40 oawordeu A On B On A B ∃! d On A + 𝑜 d = B
41 25 26 39 40 syl21anc B ω 1 𝑜 N B A suc suc N ∃! d On A + 𝑜 d = B
42 reusn ∃! d On A + 𝑜 d = B x d On | A + 𝑜 d = B = x
43 unieq d On | A + 𝑜 d = B = x d On | A + 𝑜 d = B = x
44 unisnv x = x
45 43 44 eqtrdi d On | A + 𝑜 d = B = x d On | A + 𝑜 d = B = x
46 vsnid x x
47 eleq2 d On | A + 𝑜 d = B = x x d On | A + 𝑜 d = B x x
48 46 47 mpbiri d On | A + 𝑜 d = B = x x d On | A + 𝑜 d = B
49 45 48 eqeltrd d On | A + 𝑜 d = B = x d On | A + 𝑜 d = B d On | A + 𝑜 d = B
50 49 exlimiv x d On | A + 𝑜 d = B = x d On | A + 𝑜 d = B d On | A + 𝑜 d = B
51 42 50 sylbi ∃! d On A + 𝑜 d = B d On | A + 𝑜 d = B d On | A + 𝑜 d = B
52 41 51 syl B ω 1 𝑜 N B A suc suc N d On | A + 𝑜 d = B d On | A + 𝑜 d = B
53 15 52 eqeltrd B ω 1 𝑜 N B A suc suc N F A d On | A + 𝑜 d = B
54 oveq2 d = F A A + 𝑜 d = A + 𝑜 F A
55 54 eqeq1d d = F A A + 𝑜 d = B A + 𝑜 F A = B
56 55 elrab F A d On | A + 𝑜 d = B F A On A + 𝑜 F A = B
57 53 56 sylib B ω 1 𝑜 N B A suc suc N F A On A + 𝑜 F A = B
58 57 simprd B ω 1 𝑜 N B A suc suc N A + 𝑜 F A = B