Metamath Proof Explorer


Theorem fineqvnttrclselem1

Description: Lemma for fineqvnttrclse . (Contributed by BTernaryTau, 12-Jan-2026)

Ref Expression
Assertion fineqvnttrclselem1 B ω 1 𝑜 d On | A + 𝑜 d = B ω

Proof

Step Hyp Ref Expression
1 eldifi B ω 1 𝑜 B ω
2 eleq1 A + 𝑜 d = B A + 𝑜 d ω B ω
3 2 biimparc B ω A + 𝑜 d = B A + 𝑜 d ω
4 3 adantll A On B ω A + 𝑜 d = B A + 𝑜 d ω
5 4 3adant2 A On B ω d On A + 𝑜 d = B A + 𝑜 d ω
6 nnarcl A On d On A + 𝑜 d ω A ω d ω
7 6 adantlr A On B ω d On A + 𝑜 d ω A ω d ω
8 7 3adant3 A On B ω d On A + 𝑜 d = B A + 𝑜 d ω A ω d ω
9 5 8 mpbid A On B ω d On A + 𝑜 d = B A ω d ω
10 9 simprd A On B ω d On A + 𝑜 d = B d ω
11 10 rabssdv A On B ω d On | A + 𝑜 d = B ω
12 nnon B ω B On
13 oawordeu A On B On A B ∃! d On A + 𝑜 d = B
14 reusn ∃! d On A + 𝑜 d = B w d On | A + 𝑜 d = B = w
15 snfi w Fin
16 eleq1 d On | A + 𝑜 d = B = w d On | A + 𝑜 d = B Fin w Fin
17 15 16 mpbiri d On | A + 𝑜 d = B = w d On | A + 𝑜 d = B Fin
18 17 exlimiv w d On | A + 𝑜 d = B = w d On | A + 𝑜 d = B Fin
19 14 18 sylbi ∃! d On A + 𝑜 d = B d On | A + 𝑜 d = B Fin
20 13 19 syl A On B On A B d On | A + 𝑜 d = B Fin
21 12 20 sylanl2 A On B ω A B d On | A + 𝑜 d = B Fin
22 nnunifi d On | A + 𝑜 d = B ω d On | A + 𝑜 d = B Fin d On | A + 𝑜 d = B ω
23 11 21 22 syl2an2r A On B ω A B d On | A + 𝑜 d = B ω
24 oawordex A On B On A B d On A + 𝑜 d = B
25 12 24 sylan2 A On B ω A B d On A + 𝑜 d = B
26 25 notbid A On B ω ¬ A B ¬ d On A + 𝑜 d = B
27 26 biimpa A On B ω ¬ A B ¬ d On A + 𝑜 d = B
28 ralnex d On ¬ A + 𝑜 d = B ¬ d On A + 𝑜 d = B
29 rabeq0 d On | A + 𝑜 d = B = d On ¬ A + 𝑜 d = B
30 29 biimpri d On ¬ A + 𝑜 d = B d On | A + 𝑜 d = B =
31 30 unieqd d On ¬ A + 𝑜 d = B d On | A + 𝑜 d = B =
32 uni0 =
33 31 32 eqtrdi d On ¬ A + 𝑜 d = B d On | A + 𝑜 d = B =
34 peano1 ω
35 33 34 eqeltrdi d On ¬ A + 𝑜 d = B d On | A + 𝑜 d = B ω
36 28 35 sylbir ¬ d On A + 𝑜 d = B d On | A + 𝑜 d = B ω
37 27 36 syl A On B ω ¬ A B d On | A + 𝑜 d = B ω
38 23 37 pm2.61dan A On B ω d On | A + 𝑜 d = B ω
39 38 expcom B ω A On d On | A + 𝑜 d = B ω
40 1 39 syl B ω 1 𝑜 A On d On | A + 𝑜 d = B ω
41 simpl A On d On A On
42 df-oadd + 𝑜 = x On , y On rec z V suc z x y
43 42 mpondm0 ¬ A On d On A + 𝑜 d =
44 41 43 nsyl5 ¬ A On A + 𝑜 d =
45 eldifsnneq B ω ¬ B =
46 df1o2 1 𝑜 =
47 46 difeq2i ω 1 𝑜 = ω
48 45 47 eleq2s B ω 1 𝑜 ¬ B =
49 eqtr2 A + 𝑜 d = B A + 𝑜 d = B =
50 49 stoic1b A + 𝑜 d = ¬ B = ¬ A + 𝑜 d = B
51 44 48 50 syl2anr B ω 1 𝑜 ¬ A On ¬ A + 𝑜 d = B
52 51 ralrimivw B ω 1 𝑜 ¬ A On d On ¬ A + 𝑜 d = B
53 52 35 syl B ω 1 𝑜 ¬ A On d On | A + 𝑜 d = B ω
54 53 ex B ω 1 𝑜 ¬ A On d On | A + 𝑜 d = B ω
55 40 54 pm2.61d B ω 1 𝑜 d On | A + 𝑜 d = B ω