| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → 𝐵 ∈ ω ) |
| 2 |
|
eleq1 |
⊢ ( ( 𝐴 +o 𝑑 ) = 𝐵 → ( ( 𝐴 +o 𝑑 ) ∈ ω ↔ 𝐵 ∈ ω ) ) |
| 3 |
2
|
biimparc |
⊢ ( ( 𝐵 ∈ ω ∧ ( 𝐴 +o 𝑑 ) = 𝐵 ) → ( 𝐴 +o 𝑑 ) ∈ ω ) |
| 4 |
3
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ ( 𝐴 +o 𝑑 ) = 𝐵 ) → ( 𝐴 +o 𝑑 ) ∈ ω ) |
| 5 |
4
|
3adant2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝑑 ∈ On ∧ ( 𝐴 +o 𝑑 ) = 𝐵 ) → ( 𝐴 +o 𝑑 ) ∈ ω ) |
| 6 |
|
nnarcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑑 ∈ On ) → ( ( 𝐴 +o 𝑑 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝑑 ∈ ω ) ) ) |
| 7 |
6
|
adantlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝑑 ∈ On ) → ( ( 𝐴 +o 𝑑 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝑑 ∈ ω ) ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝑑 ∈ On ∧ ( 𝐴 +o 𝑑 ) = 𝐵 ) → ( ( 𝐴 +o 𝑑 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝑑 ∈ ω ) ) ) |
| 9 |
5 8
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝑑 ∈ On ∧ ( 𝐴 +o 𝑑 ) = 𝐵 ) → ( 𝐴 ∈ ω ∧ 𝑑 ∈ ω ) ) |
| 10 |
9
|
simprd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝑑 ∈ On ∧ ( 𝐴 +o 𝑑 ) = 𝐵 ) → 𝑑 ∈ ω ) |
| 11 |
10
|
rabssdv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ⊆ ω ) |
| 12 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 13 |
|
oawordeu |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 14 |
|
reusn |
⊢ ( ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ↔ ∃ 𝑤 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑤 } ) |
| 15 |
|
snfi |
⊢ { 𝑤 } ∈ Fin |
| 16 |
|
eleq1 |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑤 } → ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ↔ { 𝑤 } ∈ Fin ) ) |
| 17 |
15 16
|
mpbiri |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑤 } → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ) |
| 18 |
17
|
exlimiv |
⊢ ( ∃ 𝑤 { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = { 𝑤 } → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ) |
| 19 |
14 18
|
sylbi |
⊢ ( ∃! 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ) |
| 20 |
13 19
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ) |
| 21 |
12 20
|
sylanl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ) |
| 22 |
|
nnunifi |
⊢ ( ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ⊆ ω ∧ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ Fin ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 23 |
11 21 22
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ⊆ 𝐵 ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 24 |
|
oawordex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) ) |
| 25 |
12 24
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) ) |
| 26 |
25
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ¬ ∃ 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ¬ ∃ 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 28 |
|
ralnex |
⊢ ( ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 ↔ ¬ ∃ 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 29 |
|
rabeq0 |
⊢ ( { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = ∅ ↔ ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 30 |
29
|
biimpri |
⊢ ( ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 → { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = ∅ ) |
| 31 |
30
|
unieqd |
⊢ ( ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = ∪ ∅ ) |
| 32 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 33 |
31 32
|
eqtrdi |
⊢ ( ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } = ∅ ) |
| 34 |
|
peano1 |
⊢ ∅ ∈ ω |
| 35 |
33 34
|
eqeltrdi |
⊢ ( ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 36 |
28 35
|
sylbir |
⊢ ( ¬ ∃ 𝑑 ∈ On ( 𝐴 +o 𝑑 ) = 𝐵 → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 37 |
27 36
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 38 |
23 37
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 39 |
38
|
expcom |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ On → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) ) |
| 40 |
1 39
|
syl |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ( 𝐴 ∈ On → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) ) |
| 41 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑑 ∈ On ) → 𝐴 ∈ On ) |
| 42 |
|
df-oadd |
⊢ +o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) ) |
| 43 |
42
|
mpondm0 |
⊢ ( ¬ ( 𝐴 ∈ On ∧ 𝑑 ∈ On ) → ( 𝐴 +o 𝑑 ) = ∅ ) |
| 44 |
41 43
|
nsyl5 |
⊢ ( ¬ 𝐴 ∈ On → ( 𝐴 +o 𝑑 ) = ∅ ) |
| 45 |
|
eldifsnneq |
⊢ ( 𝐵 ∈ ( ω ∖ { ∅ } ) → ¬ 𝐵 = ∅ ) |
| 46 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 47 |
46
|
difeq2i |
⊢ ( ω ∖ 1o ) = ( ω ∖ { ∅ } ) |
| 48 |
45 47
|
eleq2s |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ¬ 𝐵 = ∅ ) |
| 49 |
|
eqtr2 |
⊢ ( ( ( 𝐴 +o 𝑑 ) = 𝐵 ∧ ( 𝐴 +o 𝑑 ) = ∅ ) → 𝐵 = ∅ ) |
| 50 |
49
|
stoic1b |
⊢ ( ( ( 𝐴 +o 𝑑 ) = ∅ ∧ ¬ 𝐵 = ∅ ) → ¬ ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 51 |
44 48 50
|
syl2anr |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ ¬ 𝐴 ∈ On ) → ¬ ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 52 |
51
|
ralrimivw |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ ¬ 𝐴 ∈ On ) → ∀ 𝑑 ∈ On ¬ ( 𝐴 +o 𝑑 ) = 𝐵 ) |
| 53 |
52 35
|
syl |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ ¬ 𝐴 ∈ On ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 54 |
53
|
ex |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ( ¬ 𝐴 ∈ On → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) ) |
| 55 |
40 54
|
pm2.61d |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( 𝐴 +o 𝑑 ) = 𝐵 } ∈ ω ) |