Metamath Proof Explorer


Theorem fineqvnttrclse

Description: A counterexample demonstrating that ttrclse does not hold when all sets are finite. (Contributed by BTernaryTau, 12-Jan-2026)

Ref Expression
Hypotheses fineqvnttrclse.1 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑥 = suc 𝑦 ) }
fineqvnttrclse.2 𝐴 = ω
Assertion fineqvnttrclse ( Fin = V → ( 𝑅 Se 𝐴 ∧ ¬ t++ ( 𝑅𝐴 ) Se 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fineqvnttrclse.1 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑥 = suc 𝑦 ) }
2 fineqvnttrclse.2 𝐴 = ω
3 ominf ¬ ω ∈ Fin
4 1onn 1o ∈ ω
5 nnfi ( 1o ∈ ω → 1o ∈ Fin )
6 4 5 ax-mp 1o ∈ Fin
7 difinf ( ( ¬ ω ∈ Fin ∧ 1o ∈ Fin ) → ¬ ( ω ∖ 1o ) ∈ Fin )
8 3 6 7 mp2an ¬ ( ω ∖ 1o ) ∈ Fin
9 eleq2 ( Fin = V → ( ( ω ∖ 1o ) ∈ Fin ↔ ( ω ∖ 1o ) ∈ V ) )
10 8 9 mtbii ( Fin = V → ¬ ( ω ∖ 1o ) ∈ V )
11 difss ( ω ∖ 1o ) ⊆ ω
12 11 2 sseqtrri ( ω ∖ 1o ) ⊆ 𝐴
13 eldifi ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 ∈ ω )
14 eldifn ( 𝑢 ∈ ( ω ∖ 1o ) → ¬ 𝑢 ∈ 1o )
15 0lt1o ∅ ∈ 1o
16 eleq1 ( 𝑢 = ∅ → ( 𝑢 ∈ 1o ↔ ∅ ∈ 1o ) )
17 15 16 mpbiri ( 𝑢 = ∅ → 𝑢 ∈ 1o )
18 17 necon3bi ( ¬ 𝑢 ∈ 1o𝑢 ≠ ∅ )
19 14 18 syl ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 ≠ ∅ )
20 nnsuc ( ( 𝑢 ∈ ω ∧ 𝑢 ≠ ∅ ) → ∃ 𝑛 ∈ ω 𝑢 = suc 𝑛 )
21 eqcom ( 𝑢 = suc 𝑛 ↔ suc 𝑛 = 𝑢 )
22 21 rexbii ( ∃ 𝑛 ∈ ω 𝑢 = suc 𝑛 ↔ ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 )
23 20 22 sylib ( ( 𝑢 ∈ ω ∧ 𝑢 ≠ ∅ ) → ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 )
24 13 19 23 syl2anc ( 𝑢 ∈ ( ω ∖ 1o ) → ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 )
25 sucexg ( 𝑛 ∈ V → suc 𝑛 ∈ V )
26 25 elv suc 𝑛 ∈ V
27 26 sucex suc suc 𝑛 ∈ V
28 27 mptex ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ∈ V
29 28 a1i ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ∈ V )
30 fineqvnttrclselem1 ( 𝑢 ∈ ( ω ∖ 1o ) → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ ω )
31 30 elexd ( 𝑢 ∈ ( ω ∖ 1o ) → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ V )
32 31 ralrimivw ( 𝑢 ∈ ( ω ∖ 1o ) → ∀ 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ V )
33 eqid ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } )
34 33 fnmpt ( ∀ 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ V → ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 )
35 32 34 syl ( 𝑢 ∈ ( ω ∖ 1o ) → ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 )
36 35 adantr ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 )
37 nnon ( 𝑢 ∈ ω → 𝑢 ∈ On )
38 13 37 syl ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 ∈ On )
39 eloni ( 𝑢 ∈ On → Ord 𝑢 )
40 38 39 syl ( 𝑢 ∈ ( ω ∖ 1o ) → Ord 𝑢 )
41 40 adantr ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → Ord 𝑢 )
42 ordeq ( suc 𝑛 = 𝑢 → ( Ord suc 𝑛 ↔ Ord 𝑢 ) )
43 42 adantl ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( Ord suc 𝑛 ↔ Ord 𝑢 ) )
44 41 43 mpbird ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → Ord suc 𝑛 )
45 0elsuc ( Ord suc 𝑛 → ∅ ∈ suc suc 𝑛 )
46 44 45 syl ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∅ ∈ suc suc 𝑛 )
47 simpl ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → 𝑢 ∈ ( ω ∖ 1o ) )
48 oveq1 ( 𝑣 = ∅ → ( 𝑣 +o 𝑑 ) = ( ∅ +o 𝑑 ) )
49 48 eqeq1d ( 𝑣 = ∅ → ( ( 𝑣 +o 𝑑 ) = 𝑢 ↔ ( ∅ +o 𝑑 ) = 𝑢 ) )
50 49 rabbidv ( 𝑣 = ∅ → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } )
51 50 unieqd ( 𝑣 = ∅ → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } )
52 simpl ( ( ∅ ∈ suc suc 𝑛𝑢 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc suc 𝑛 )
53 fineqvnttrclselem1 ( 𝑢 ∈ ( ω ∖ 1o ) → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ∈ ω )
54 53 adantl ( ( ∅ ∈ suc suc 𝑛𝑢 ∈ ( ω ∖ 1o ) ) → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ∈ ω )
55 33 51 52 54 fvmptd3 ( ( ∅ ∈ suc suc 𝑛𝑢 ∈ ( ω ∖ 1o ) ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } )
56 oa0r ( 𝑑 ∈ On → ( ∅ +o 𝑑 ) = 𝑑 )
57 56 eqeq1d ( 𝑑 ∈ On → ( ( ∅ +o 𝑑 ) = 𝑢𝑑 = 𝑢 ) )
58 57 rabbiia { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ 𝑑 = 𝑢 }
59 rabsn ( 𝑢 ∈ On → { 𝑑 ∈ On ∣ 𝑑 = 𝑢 } = { 𝑢 } )
60 58 59 eqtrid ( 𝑢 ∈ On → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = { 𝑢 } )
61 60 unieqd ( 𝑢 ∈ On → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = { 𝑢 } )
62 unisnv { 𝑢 } = 𝑢
63 61 62 eqtrdi ( 𝑢 ∈ On → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = 𝑢 )
64 38 63 syl ( 𝑢 ∈ ( ω ∖ 1o ) → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = 𝑢 )
65 64 adantl ( ( ∅ ∈ suc suc 𝑛𝑢 ∈ ( ω ∖ 1o ) ) → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = 𝑢 )
66 55 65 eqtrd ( ( ∅ ∈ suc suc 𝑛𝑢 ∈ ( ω ∖ 1o ) ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 )
67 46 47 66 syl2anc ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 )
68 oveq1 ( 𝑣 = suc 𝑛 → ( 𝑣 +o 𝑑 ) = ( suc 𝑛 +o 𝑑 ) )
69 68 eqeq1d ( 𝑣 = suc 𝑛 → ( ( 𝑣 +o 𝑑 ) = 𝑢 ↔ ( suc 𝑛 +o 𝑑 ) = 𝑢 ) )
70 69 rabbidv ( 𝑣 = suc 𝑛 → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } )
71 70 unieqd ( 𝑣 = suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } )
72 26 sucid suc 𝑛 ∈ suc suc 𝑛
73 72 a1i ( 𝑢 ∈ ( ω ∖ 1o ) → suc 𝑛 ∈ suc suc 𝑛 )
74 fineqvnttrclselem1 ( 𝑢 ∈ ( ω ∖ 1o ) → { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } ∈ ω )
75 33 71 73 74 fvmptd3 ( 𝑢 ∈ ( ω ∖ 1o ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } )
76 75 adantr ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } )
77 oveq1 ( suc 𝑛 = 𝑢 → ( suc 𝑛 +o 𝑑 ) = ( 𝑢 +o 𝑑 ) )
78 77 eqeq1d ( suc 𝑛 = 𝑢 → ( ( suc 𝑛 +o 𝑑 ) = 𝑢 ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) )
79 78 ad2antlr ( ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) ∧ 𝑑 ∈ On ) → ( ( suc 𝑛 +o 𝑑 ) = 𝑢 ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) )
80 oa0 ( 𝑢 ∈ On → ( 𝑢 +o ∅ ) = 𝑢 )
81 80 adantr ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑢 +o ∅ ) = 𝑢 )
82 oveq2 ( 𝑑 = ∅ → ( 𝑢 +o 𝑑 ) = ( 𝑢 +o ∅ ) )
83 82 eqeq1d ( 𝑑 = ∅ → ( ( 𝑢 +o 𝑑 ) = 𝑢 ↔ ( 𝑢 +o ∅ ) = 𝑢 ) )
84 81 83 syl5ibrcom ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑑 = ∅ → ( 𝑢 +o 𝑑 ) = 𝑢 ) )
85 oveq2 ( 𝑠 = 𝑑 → ( 𝑢 +o 𝑠 ) = ( 𝑢 +o 𝑑 ) )
86 85 eqeq1d ( 𝑠 = 𝑑 → ( ( 𝑢 +o 𝑠 ) = 𝑢 ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) )
87 oveq2 ( 𝑠 = ∅ → ( 𝑢 +o 𝑠 ) = ( 𝑢 +o ∅ ) )
88 87 eqeq1d ( 𝑠 = ∅ → ( ( 𝑢 +o 𝑠 ) = 𝑢 ↔ ( 𝑢 +o ∅ ) = 𝑢 ) )
89 ssid 𝑢𝑢
90 oawordeu ( ( ( 𝑢 ∈ On ∧ 𝑢 ∈ On ) ∧ 𝑢𝑢 ) → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 )
91 89 90 mpan2 ( ( 𝑢 ∈ On ∧ 𝑢 ∈ On ) → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 )
92 91 anidms ( 𝑢 ∈ On → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 )
93 92 3ad2ant1 ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 )
94 simp2 ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → 𝑑 ∈ On )
95 0elon ∅ ∈ On
96 95 a1i ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ∅ ∈ On )
97 simp3 ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ( 𝑢 +o 𝑑 ) = 𝑢 )
98 80 3ad2ant1 ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ( 𝑢 +o ∅ ) = 𝑢 )
99 86 88 93 94 96 97 98 reu2eqd ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → 𝑑 = ∅ )
100 99 3expia ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( ( 𝑢 +o 𝑑 ) = 𝑢𝑑 = ∅ ) )
101 84 100 impbid ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑑 = ∅ ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) )
102 101 adantlr ( ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) ∧ 𝑑 ∈ On ) → ( 𝑑 = ∅ ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) )
103 79 102 bitr4d ( ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) ∧ 𝑑 ∈ On ) → ( ( suc 𝑛 +o 𝑑 ) = 𝑢𝑑 = ∅ ) )
104 103 rabbidva ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) → { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ 𝑑 = ∅ } )
105 104 unieqd ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) → { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ 𝑑 = ∅ } )
106 rabsn ( ∅ ∈ On → { 𝑑 ∈ On ∣ 𝑑 = ∅ } = { ∅ } )
107 95 106 ax-mp { 𝑑 ∈ On ∣ 𝑑 = ∅ } = { ∅ }
108 107 unieqi { 𝑑 ∈ On ∣ 𝑑 = ∅ } = { ∅ }
109 0ex ∅ ∈ V
110 109 unisn { ∅ } = ∅
111 108 110 eqtri { 𝑑 ∈ On ∣ 𝑑 = ∅ } = ∅
112 105 111 eqtrdi ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) → { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = ∅ )
113 38 112 sylan ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = ∅ )
114 76 113 eqtrd ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ )
115 67 114 jca ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) )
116 vex 𝑛 ∈ V
117 116 sucid 𝑛 ∈ suc 𝑛
118 eleq2 ( suc 𝑛 = 𝑢 → ( 𝑛 ∈ suc 𝑛𝑛𝑢 ) )
119 117 118 mpbii ( suc 𝑛 = 𝑢𝑛𝑢 )
120 oveq2 ( 𝑑 = 𝑒 → ( 𝑣 +o 𝑑 ) = ( 𝑣 +o 𝑒 ) )
121 120 eqeq1d ( 𝑑 = 𝑒 → ( ( 𝑣 +o 𝑑 ) = 𝑢 ↔ ( 𝑣 +o 𝑒 ) = 𝑢 ) )
122 121 cbvrabv { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑒 ∈ On ∣ ( 𝑣 +o 𝑒 ) = 𝑢 }
123 122 unieqi { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑒 ∈ On ∣ ( 𝑣 +o 𝑒 ) = 𝑢 }
124 123 mpteq2i ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) = ( 𝑣 ∈ suc suc 𝑛 { 𝑒 ∈ On ∣ ( 𝑣 +o 𝑒 ) = 𝑢 } )
125 1 2 124 fineqvnttrclselem3 ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ 𝑛𝑢 ) → ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) )
126 119 125 sylan2 ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) )
127 36 115 126 3jca ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ∧ ( ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) )
128 fneq1 ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 Fn suc suc 𝑛 ↔ ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ) )
129 fveq1 ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) )
130 129 eqeq1d ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 ‘ ∅ ) = 𝑢 ↔ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ) )
131 fveq1 ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ suc 𝑛 ) = ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) )
132 131 eqeq1d ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 ‘ suc 𝑛 ) = ∅ ↔ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) )
133 130 132 anbi12d ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ↔ ( ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ) )
134 fveq1 ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓𝑎 ) = ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) )
135 fveq1 ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ suc 𝑎 ) = ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) )
136 134 135 breq12d ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) )
137 136 ralbidv ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) )
138 128 133 137 3anbi123d ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ∧ ( ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) ) )
139 29 127 138 spcedv ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
140 139 ex ( 𝑢 ∈ ( ω ∖ 1o ) → ( suc 𝑛 = 𝑢 → ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) )
141 140 reximdv ( 𝑢 ∈ ( ω ∖ 1o ) → ( ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 → ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) )
142 24 141 mpd ( 𝑢 ∈ ( ω ∖ 1o ) → ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
143 brttrcl2 ( 𝑢 t++ 𝑅 ∅ ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
144 142 143 sylibr ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 t++ 𝑅 ∅ )
145 1 relopabiv Rel 𝑅
146 1 dmeqi dom 𝑅 = dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑥 = suc 𝑦 ) }
147 dmopabss dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑥 = suc 𝑦 ) } ⊆ 𝐴
148 146 147 eqsstri dom 𝑅𝐴
149 relssres ( ( Rel 𝑅 ∧ dom 𝑅𝐴 ) → ( 𝑅𝐴 ) = 𝑅 )
150 145 148 149 mp2an ( 𝑅𝐴 ) = 𝑅
151 ttrcleq ( ( 𝑅𝐴 ) = 𝑅 → t++ ( 𝑅𝐴 ) = t++ 𝑅 )
152 150 151 ax-mp t++ ( 𝑅𝐴 ) = t++ 𝑅
153 152 breqi ( 𝑢 t++ ( 𝑅𝐴 ) ∅ ↔ 𝑢 t++ 𝑅 ∅ )
154 144 153 sylibr ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 t++ ( 𝑅𝐴 ) ∅ )
155 154 rgen 𝑢 ∈ ( ω ∖ 1o ) 𝑢 t++ ( 𝑅𝐴 ) ∅
156 ssrab ( ( ω ∖ 1o ) ⊆ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ↔ ( ( ω ∖ 1o ) ⊆ 𝐴 ∧ ∀ 𝑢 ∈ ( ω ∖ 1o ) 𝑢 t++ ( 𝑅𝐴 ) ∅ ) )
157 12 155 156 mpbir2an ( ω ∖ 1o ) ⊆ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ }
158 ssexg ( ( ( ω ∖ 1o ) ⊆ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∧ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V ) → ( ω ∖ 1o ) ∈ V )
159 157 158 mpan ( { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V → ( ω ∖ 1o ) ∈ V )
160 159 con3i ( ¬ ( ω ∖ 1o ) ∈ V → ¬ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V )
161 peano1 ∅ ∈ ω
162 161 2 eleqtrri ∅ ∈ 𝐴
163 breq2 ( 𝑡 = ∅ → ( 𝑢 t++ ( 𝑅𝐴 ) 𝑡𝑢 t++ ( 𝑅𝐴 ) ∅ ) )
164 163 rabbidv ( 𝑡 = ∅ → { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } = { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } )
165 164 eleq1d ( 𝑡 = ∅ → ( { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } ∈ V ↔ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V ) )
166 165 rspcv ( ∅ ∈ 𝐴 → ( ∀ 𝑡𝐴 { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } ∈ V → { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V ) )
167 162 166 ax-mp ( ∀ 𝑡𝐴 { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } ∈ V → { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V )
168 167 con3i ( ¬ { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) ∅ } ∈ V → ¬ ∀ 𝑡𝐴 { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } ∈ V )
169 10 160 168 3syl ( Fin = V → ¬ ∀ 𝑡𝐴 { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } ∈ V )
170 df-se ( t++ ( 𝑅𝐴 ) Se 𝐴 ↔ ∀ 𝑡𝐴 { 𝑢𝐴𝑢 t++ ( 𝑅𝐴 ) 𝑡 } ∈ V )
171 169 170 sylnibr ( Fin = V → ¬ t++ ( 𝑅𝐴 ) Se 𝐴 )
172 vex 𝑤 ∈ V
173 vex 𝑧 ∈ V
174 eleq1w ( 𝑥 = 𝑤 → ( 𝑥𝐴𝑤𝐴 ) )
175 eqeq1 ( 𝑥 = 𝑤 → ( 𝑥 = suc 𝑦𝑤 = suc 𝑦 ) )
176 174 175 anbi12d ( 𝑥 = 𝑤 → ( ( 𝑥𝐴𝑥 = suc 𝑦 ) ↔ ( 𝑤𝐴𝑤 = suc 𝑦 ) ) )
177 suceq ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 )
178 177 eqeq2d ( 𝑦 = 𝑧 → ( 𝑤 = suc 𝑦𝑤 = suc 𝑧 ) )
179 178 anbi2d ( 𝑦 = 𝑧 → ( ( 𝑤𝐴𝑤 = suc 𝑦 ) ↔ ( 𝑤𝐴𝑤 = suc 𝑧 ) ) )
180 172 173 176 179 1 brab ( 𝑤 𝑅 𝑧 ↔ ( 𝑤𝐴𝑤 = suc 𝑧 ) )
181 180 biimpi ( 𝑤 𝑅 𝑧 → ( 𝑤𝐴𝑤 = suc 𝑧 ) )
182 181 adantl ( ( 𝑤𝐴𝑤 𝑅 𝑧 ) → ( 𝑤𝐴𝑤 = suc 𝑧 ) )
183 simpl ( ( 𝑤𝐴𝑤 = suc 𝑧 ) → 𝑤𝐴 )
184 180 biimpri ( ( 𝑤𝐴𝑤 = suc 𝑧 ) → 𝑤 𝑅 𝑧 )
185 183 184 jca ( ( 𝑤𝐴𝑤 = suc 𝑧 ) → ( 𝑤𝐴𝑤 𝑅 𝑧 ) )
186 182 185 impbii ( ( 𝑤𝐴𝑤 𝑅 𝑧 ) ↔ ( 𝑤𝐴𝑤 = suc 𝑧 ) )
187 186 rabbia2 { 𝑤𝐴𝑤 𝑅 𝑧 } = { 𝑤𝐴𝑤 = suc 𝑧 }
188 173 sucex suc 𝑧 ∈ V
189 188 eueqi ∃! 𝑤 𝑤 = suc 𝑧
190 euabex ( ∃! 𝑤 𝑤 = suc 𝑧 → { 𝑤𝑤 = suc 𝑧 } ∈ V )
191 189 190 ax-mp { 𝑤𝑤 = suc 𝑧 } ∈ V
192 rabssab { 𝑤𝐴𝑤 = suc 𝑧 } ⊆ { 𝑤𝑤 = suc 𝑧 }
193 191 192 ssexi { 𝑤𝐴𝑤 = suc 𝑧 } ∈ V
194 187 193 eqeltri { 𝑤𝐴𝑤 𝑅 𝑧 } ∈ V
195 194 rgenw 𝑧𝐴 { 𝑤𝐴𝑤 𝑅 𝑧 } ∈ V
196 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑧𝐴 { 𝑤𝐴𝑤 𝑅 𝑧 } ∈ V )
197 195 196 mpbir 𝑅 Se 𝐴
198 171 197 jctil ( Fin = V → ( 𝑅 Se 𝐴 ∧ ¬ t++ ( 𝑅𝐴 ) Se 𝐴 ) )