| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvnttrclse.1 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦 ) } |
| 2 |
|
fineqvnttrclse.2 |
⊢ 𝐴 = ω |
| 3 |
|
ominf |
⊢ ¬ ω ∈ Fin |
| 4 |
|
1onn |
⊢ 1o ∈ ω |
| 5 |
|
nnfi |
⊢ ( 1o ∈ ω → 1o ∈ Fin ) |
| 6 |
4 5
|
ax-mp |
⊢ 1o ∈ Fin |
| 7 |
|
difinf |
⊢ ( ( ¬ ω ∈ Fin ∧ 1o ∈ Fin ) → ¬ ( ω ∖ 1o ) ∈ Fin ) |
| 8 |
3 6 7
|
mp2an |
⊢ ¬ ( ω ∖ 1o ) ∈ Fin |
| 9 |
|
eleq2 |
⊢ ( Fin = V → ( ( ω ∖ 1o ) ∈ Fin ↔ ( ω ∖ 1o ) ∈ V ) ) |
| 10 |
8 9
|
mtbii |
⊢ ( Fin = V → ¬ ( ω ∖ 1o ) ∈ V ) |
| 11 |
|
difss |
⊢ ( ω ∖ 1o ) ⊆ ω |
| 12 |
11 2
|
sseqtrri |
⊢ ( ω ∖ 1o ) ⊆ 𝐴 |
| 13 |
|
eldifi |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 ∈ ω ) |
| 14 |
|
eldifn |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ¬ 𝑢 ∈ 1o ) |
| 15 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 16 |
|
eleq1 |
⊢ ( 𝑢 = ∅ → ( 𝑢 ∈ 1o ↔ ∅ ∈ 1o ) ) |
| 17 |
15 16
|
mpbiri |
⊢ ( 𝑢 = ∅ → 𝑢 ∈ 1o ) |
| 18 |
17
|
necon3bi |
⊢ ( ¬ 𝑢 ∈ 1o → 𝑢 ≠ ∅ ) |
| 19 |
14 18
|
syl |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 ≠ ∅ ) |
| 20 |
|
nnsuc |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑢 ≠ ∅ ) → ∃ 𝑛 ∈ ω 𝑢 = suc 𝑛 ) |
| 21 |
|
eqcom |
⊢ ( 𝑢 = suc 𝑛 ↔ suc 𝑛 = 𝑢 ) |
| 22 |
21
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ω 𝑢 = suc 𝑛 ↔ ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 ) |
| 23 |
20 22
|
sylib |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑢 ≠ ∅ ) → ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 ) |
| 24 |
13 19 23
|
syl2anc |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 ) |
| 25 |
|
sucexg |
⊢ ( 𝑛 ∈ V → suc 𝑛 ∈ V ) |
| 26 |
25
|
elv |
⊢ suc 𝑛 ∈ V |
| 27 |
26
|
sucex |
⊢ suc suc 𝑛 ∈ V |
| 28 |
27
|
mptex |
⊢ ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ∈ V |
| 29 |
28
|
a1i |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ∈ V ) |
| 30 |
|
fineqvnttrclselem1 |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ ω ) |
| 31 |
30
|
elexd |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ V ) |
| 32 |
31
|
ralrimivw |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∀ 𝑣 ∈ suc suc 𝑛 ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ V ) |
| 33 |
|
eqid |
⊢ ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) |
| 34 |
33
|
fnmpt |
⊢ ( ∀ 𝑣 ∈ suc suc 𝑛 ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ∈ V → ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ) |
| 35 |
32 34
|
syl |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ) |
| 37 |
|
nnon |
⊢ ( 𝑢 ∈ ω → 𝑢 ∈ On ) |
| 38 |
13 37
|
syl |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 ∈ On ) |
| 39 |
|
eloni |
⊢ ( 𝑢 ∈ On → Ord 𝑢 ) |
| 40 |
38 39
|
syl |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → Ord 𝑢 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → Ord 𝑢 ) |
| 42 |
|
ordeq |
⊢ ( suc 𝑛 = 𝑢 → ( Ord suc 𝑛 ↔ Ord 𝑢 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( Ord suc 𝑛 ↔ Ord 𝑢 ) ) |
| 44 |
41 43
|
mpbird |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → Ord suc 𝑛 ) |
| 45 |
|
0elsuc |
⊢ ( Ord suc 𝑛 → ∅ ∈ suc suc 𝑛 ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∅ ∈ suc suc 𝑛 ) |
| 47 |
|
simpl |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → 𝑢 ∈ ( ω ∖ 1o ) ) |
| 48 |
|
oveq1 |
⊢ ( 𝑣 = ∅ → ( 𝑣 +o 𝑑 ) = ( ∅ +o 𝑑 ) ) |
| 49 |
48
|
eqeq1d |
⊢ ( 𝑣 = ∅ → ( ( 𝑣 +o 𝑑 ) = 𝑢 ↔ ( ∅ +o 𝑑 ) = 𝑢 ) ) |
| 50 |
49
|
rabbidv |
⊢ ( 𝑣 = ∅ → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ) |
| 51 |
50
|
unieqd |
⊢ ( 𝑣 = ∅ → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ) |
| 52 |
|
simpl |
⊢ ( ( ∅ ∈ suc suc 𝑛 ∧ 𝑢 ∈ ( ω ∖ 1o ) ) → ∅ ∈ suc suc 𝑛 ) |
| 53 |
|
fineqvnttrclselem1 |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ∈ ω ) |
| 54 |
53
|
adantl |
⊢ ( ( ∅ ∈ suc suc 𝑛 ∧ 𝑢 ∈ ( ω ∖ 1o ) ) → ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ∈ ω ) |
| 55 |
33 51 52 54
|
fvmptd3 |
⊢ ( ( ∅ ∈ suc suc 𝑛 ∧ 𝑢 ∈ ( ω ∖ 1o ) ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } ) |
| 56 |
|
oa0r |
⊢ ( 𝑑 ∈ On → ( ∅ +o 𝑑 ) = 𝑑 ) |
| 57 |
56
|
eqeq1d |
⊢ ( 𝑑 ∈ On → ( ( ∅ +o 𝑑 ) = 𝑢 ↔ 𝑑 = 𝑢 ) ) |
| 58 |
57
|
rabbiia |
⊢ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ 𝑑 = 𝑢 } |
| 59 |
|
rabsn |
⊢ ( 𝑢 ∈ On → { 𝑑 ∈ On ∣ 𝑑 = 𝑢 } = { 𝑢 } ) |
| 60 |
58 59
|
eqtrid |
⊢ ( 𝑢 ∈ On → { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = { 𝑢 } ) |
| 61 |
60
|
unieqd |
⊢ ( 𝑢 ∈ On → ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = ∪ { 𝑢 } ) |
| 62 |
|
unisnv |
⊢ ∪ { 𝑢 } = 𝑢 |
| 63 |
61 62
|
eqtrdi |
⊢ ( 𝑢 ∈ On → ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = 𝑢 ) |
| 64 |
38 63
|
syl |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = 𝑢 ) |
| 65 |
64
|
adantl |
⊢ ( ( ∅ ∈ suc suc 𝑛 ∧ 𝑢 ∈ ( ω ∖ 1o ) ) → ∪ { 𝑑 ∈ On ∣ ( ∅ +o 𝑑 ) = 𝑢 } = 𝑢 ) |
| 66 |
55 65
|
eqtrd |
⊢ ( ( ∅ ∈ suc suc 𝑛 ∧ 𝑢 ∈ ( ω ∖ 1o ) ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ) |
| 67 |
46 47 66
|
syl2anc |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ) |
| 68 |
|
oveq1 |
⊢ ( 𝑣 = suc 𝑛 → ( 𝑣 +o 𝑑 ) = ( suc 𝑛 +o 𝑑 ) ) |
| 69 |
68
|
eqeq1d |
⊢ ( 𝑣 = suc 𝑛 → ( ( 𝑣 +o 𝑑 ) = 𝑢 ↔ ( suc 𝑛 +o 𝑑 ) = 𝑢 ) ) |
| 70 |
69
|
rabbidv |
⊢ ( 𝑣 = suc 𝑛 → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } ) |
| 71 |
70
|
unieqd |
⊢ ( 𝑣 = suc 𝑛 → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } ) |
| 72 |
26
|
sucid |
⊢ suc 𝑛 ∈ suc suc 𝑛 |
| 73 |
72
|
a1i |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → suc 𝑛 ∈ suc suc 𝑛 ) |
| 74 |
|
fineqvnttrclselem1 |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } ∈ ω ) |
| 75 |
33 71 73 74
|
fvmptd3 |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } ) |
| 77 |
|
oveq1 |
⊢ ( suc 𝑛 = 𝑢 → ( suc 𝑛 +o 𝑑 ) = ( 𝑢 +o 𝑑 ) ) |
| 78 |
77
|
eqeq1d |
⊢ ( suc 𝑛 = 𝑢 → ( ( suc 𝑛 +o 𝑑 ) = 𝑢 ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) ) |
| 79 |
78
|
ad2antlr |
⊢ ( ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) ∧ 𝑑 ∈ On ) → ( ( suc 𝑛 +o 𝑑 ) = 𝑢 ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) ) |
| 80 |
|
oa0 |
⊢ ( 𝑢 ∈ On → ( 𝑢 +o ∅ ) = 𝑢 ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑢 +o ∅ ) = 𝑢 ) |
| 82 |
|
oveq2 |
⊢ ( 𝑑 = ∅ → ( 𝑢 +o 𝑑 ) = ( 𝑢 +o ∅ ) ) |
| 83 |
82
|
eqeq1d |
⊢ ( 𝑑 = ∅ → ( ( 𝑢 +o 𝑑 ) = 𝑢 ↔ ( 𝑢 +o ∅ ) = 𝑢 ) ) |
| 84 |
81 83
|
syl5ibrcom |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑑 = ∅ → ( 𝑢 +o 𝑑 ) = 𝑢 ) ) |
| 85 |
|
oveq2 |
⊢ ( 𝑠 = 𝑑 → ( 𝑢 +o 𝑠 ) = ( 𝑢 +o 𝑑 ) ) |
| 86 |
85
|
eqeq1d |
⊢ ( 𝑠 = 𝑑 → ( ( 𝑢 +o 𝑠 ) = 𝑢 ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) ) |
| 87 |
|
oveq2 |
⊢ ( 𝑠 = ∅ → ( 𝑢 +o 𝑠 ) = ( 𝑢 +o ∅ ) ) |
| 88 |
87
|
eqeq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝑢 +o 𝑠 ) = 𝑢 ↔ ( 𝑢 +o ∅ ) = 𝑢 ) ) |
| 89 |
|
ssid |
⊢ 𝑢 ⊆ 𝑢 |
| 90 |
|
oawordeu |
⊢ ( ( ( 𝑢 ∈ On ∧ 𝑢 ∈ On ) ∧ 𝑢 ⊆ 𝑢 ) → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 ) |
| 91 |
89 90
|
mpan2 |
⊢ ( ( 𝑢 ∈ On ∧ 𝑢 ∈ On ) → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 ) |
| 92 |
91
|
anidms |
⊢ ( 𝑢 ∈ On → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 ) |
| 93 |
92
|
3ad2ant1 |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ∃! 𝑠 ∈ On ( 𝑢 +o 𝑠 ) = 𝑢 ) |
| 94 |
|
simp2 |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → 𝑑 ∈ On ) |
| 95 |
|
0elon |
⊢ ∅ ∈ On |
| 96 |
95
|
a1i |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ∅ ∈ On ) |
| 97 |
|
simp3 |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ( 𝑢 +o 𝑑 ) = 𝑢 ) |
| 98 |
80
|
3ad2ant1 |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → ( 𝑢 +o ∅ ) = 𝑢 ) |
| 99 |
86 88 93 94 96 97 98
|
reu2eqd |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ∧ ( 𝑢 +o 𝑑 ) = 𝑢 ) → 𝑑 = ∅ ) |
| 100 |
99
|
3expia |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( ( 𝑢 +o 𝑑 ) = 𝑢 → 𝑑 = ∅ ) ) |
| 101 |
84 100
|
impbid |
⊢ ( ( 𝑢 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑑 = ∅ ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) ) |
| 102 |
101
|
adantlr |
⊢ ( ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) ∧ 𝑑 ∈ On ) → ( 𝑑 = ∅ ↔ ( 𝑢 +o 𝑑 ) = 𝑢 ) ) |
| 103 |
79 102
|
bitr4d |
⊢ ( ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) ∧ 𝑑 ∈ On ) → ( ( suc 𝑛 +o 𝑑 ) = 𝑢 ↔ 𝑑 = ∅ ) ) |
| 104 |
103
|
rabbidva |
⊢ ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) → { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = { 𝑑 ∈ On ∣ 𝑑 = ∅ } ) |
| 105 |
104
|
unieqd |
⊢ ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) → ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = ∪ { 𝑑 ∈ On ∣ 𝑑 = ∅ } ) |
| 106 |
|
rabsn |
⊢ ( ∅ ∈ On → { 𝑑 ∈ On ∣ 𝑑 = ∅ } = { ∅ } ) |
| 107 |
95 106
|
ax-mp |
⊢ { 𝑑 ∈ On ∣ 𝑑 = ∅ } = { ∅ } |
| 108 |
107
|
unieqi |
⊢ ∪ { 𝑑 ∈ On ∣ 𝑑 = ∅ } = ∪ { ∅ } |
| 109 |
|
0ex |
⊢ ∅ ∈ V |
| 110 |
109
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 111 |
108 110
|
eqtri |
⊢ ∪ { 𝑑 ∈ On ∣ 𝑑 = ∅ } = ∅ |
| 112 |
105 111
|
eqtrdi |
⊢ ( ( 𝑢 ∈ On ∧ suc 𝑛 = 𝑢 ) → ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = ∅ ) |
| 113 |
38 112
|
sylan |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∪ { 𝑑 ∈ On ∣ ( suc 𝑛 +o 𝑑 ) = 𝑢 } = ∅ ) |
| 114 |
76 113
|
eqtrd |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) |
| 115 |
67 114
|
jca |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ) |
| 116 |
|
vex |
⊢ 𝑛 ∈ V |
| 117 |
116
|
sucid |
⊢ 𝑛 ∈ suc 𝑛 |
| 118 |
|
eleq2 |
⊢ ( suc 𝑛 = 𝑢 → ( 𝑛 ∈ suc 𝑛 ↔ 𝑛 ∈ 𝑢 ) ) |
| 119 |
117 118
|
mpbii |
⊢ ( suc 𝑛 = 𝑢 → 𝑛 ∈ 𝑢 ) |
| 120 |
|
oveq2 |
⊢ ( 𝑑 = 𝑒 → ( 𝑣 +o 𝑑 ) = ( 𝑣 +o 𝑒 ) ) |
| 121 |
120
|
eqeq1d |
⊢ ( 𝑑 = 𝑒 → ( ( 𝑣 +o 𝑑 ) = 𝑢 ↔ ( 𝑣 +o 𝑒 ) = 𝑢 ) ) |
| 122 |
121
|
cbvrabv |
⊢ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = { 𝑒 ∈ On ∣ ( 𝑣 +o 𝑒 ) = 𝑢 } |
| 123 |
122
|
unieqi |
⊢ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } = ∪ { 𝑒 ∈ On ∣ ( 𝑣 +o 𝑒 ) = 𝑢 } |
| 124 |
123
|
mpteq2i |
⊢ ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑒 ∈ On ∣ ( 𝑣 +o 𝑒 ) = 𝑢 } ) |
| 125 |
1 2 124
|
fineqvnttrclselem3 |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ 𝑛 ∈ 𝑢 ) → ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) |
| 126 |
119 125
|
sylan2 |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) |
| 127 |
36 115 126
|
3jca |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ∧ ( ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) ) |
| 128 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 Fn suc suc 𝑛 ↔ ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ) ) |
| 129 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) ) |
| 130 |
129
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 ‘ ∅ ) = 𝑢 ↔ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ) ) |
| 131 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ suc 𝑛 ) = ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) ) |
| 132 |
131
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 ‘ suc 𝑛 ) = ∅ ↔ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ) |
| 133 |
130 132
|
anbi12d |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ↔ ( ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ) ) |
| 134 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ 𝑎 ) = ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) ) |
| 135 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( 𝑓 ‘ suc 𝑎 ) = ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) |
| 136 |
134 135
|
breq12d |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) ) |
| 137 |
136
|
ralbidv |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) ) |
| 138 |
128 133 137
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) → ( ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) Fn suc suc 𝑛 ∧ ( ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ ∅ ) = 𝑢 ∧ ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ 𝑎 ) 𝑅 ( ( 𝑣 ∈ suc suc 𝑛 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝑢 } ) ‘ suc 𝑎 ) ) ) ) |
| 139 |
29 127 138
|
spcedv |
⊢ ( ( 𝑢 ∈ ( ω ∖ 1o ) ∧ suc 𝑛 = 𝑢 ) → ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 140 |
139
|
ex |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ( suc 𝑛 = 𝑢 → ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 141 |
140
|
reximdv |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ( ∃ 𝑛 ∈ ω suc 𝑛 = 𝑢 → ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 142 |
24 141
|
mpd |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 143 |
|
brttrcl2 |
⊢ ( 𝑢 t++ 𝑅 ∅ ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑢 ∧ ( 𝑓 ‘ suc 𝑛 ) = ∅ ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 144 |
142 143
|
sylibr |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 t++ 𝑅 ∅ ) |
| 145 |
1
|
relopabiv |
⊢ Rel 𝑅 |
| 146 |
1
|
dmeqi |
⊢ dom 𝑅 = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦 ) } |
| 147 |
|
dmopabss |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦 ) } ⊆ 𝐴 |
| 148 |
146 147
|
eqsstri |
⊢ dom 𝑅 ⊆ 𝐴 |
| 149 |
|
relssres |
⊢ ( ( Rel 𝑅 ∧ dom 𝑅 ⊆ 𝐴 ) → ( 𝑅 ↾ 𝐴 ) = 𝑅 ) |
| 150 |
145 148 149
|
mp2an |
⊢ ( 𝑅 ↾ 𝐴 ) = 𝑅 |
| 151 |
|
ttrcleq |
⊢ ( ( 𝑅 ↾ 𝐴 ) = 𝑅 → t++ ( 𝑅 ↾ 𝐴 ) = t++ 𝑅 ) |
| 152 |
150 151
|
ax-mp |
⊢ t++ ( 𝑅 ↾ 𝐴 ) = t++ 𝑅 |
| 153 |
152
|
breqi |
⊢ ( 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ ↔ 𝑢 t++ 𝑅 ∅ ) |
| 154 |
144 153
|
sylibr |
⊢ ( 𝑢 ∈ ( ω ∖ 1o ) → 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ ) |
| 155 |
154
|
rgen |
⊢ ∀ 𝑢 ∈ ( ω ∖ 1o ) 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ |
| 156 |
|
ssrab |
⊢ ( ( ω ∖ 1o ) ⊆ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ↔ ( ( ω ∖ 1o ) ⊆ 𝐴 ∧ ∀ 𝑢 ∈ ( ω ∖ 1o ) 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ ) ) |
| 157 |
12 155 156
|
mpbir2an |
⊢ ( ω ∖ 1o ) ⊆ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } |
| 158 |
|
ssexg |
⊢ ( ( ( ω ∖ 1o ) ⊆ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∧ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V ) → ( ω ∖ 1o ) ∈ V ) |
| 159 |
157 158
|
mpan |
⊢ ( { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V → ( ω ∖ 1o ) ∈ V ) |
| 160 |
159
|
con3i |
⊢ ( ¬ ( ω ∖ 1o ) ∈ V → ¬ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V ) |
| 161 |
|
peano1 |
⊢ ∅ ∈ ω |
| 162 |
161 2
|
eleqtrri |
⊢ ∅ ∈ 𝐴 |
| 163 |
|
breq2 |
⊢ ( 𝑡 = ∅ → ( 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 ↔ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ ) ) |
| 164 |
163
|
rabbidv |
⊢ ( 𝑡 = ∅ → { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } = { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ) |
| 165 |
164
|
eleq1d |
⊢ ( 𝑡 = ∅ → ( { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } ∈ V ↔ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V ) ) |
| 166 |
165
|
rspcv |
⊢ ( ∅ ∈ 𝐴 → ( ∀ 𝑡 ∈ 𝐴 { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } ∈ V → { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V ) ) |
| 167 |
162 166
|
ax-mp |
⊢ ( ∀ 𝑡 ∈ 𝐴 { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } ∈ V → { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V ) |
| 168 |
167
|
con3i |
⊢ ( ¬ { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) ∅ } ∈ V → ¬ ∀ 𝑡 ∈ 𝐴 { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } ∈ V ) |
| 169 |
10 160 168
|
3syl |
⊢ ( Fin = V → ¬ ∀ 𝑡 ∈ 𝐴 { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } ∈ V ) |
| 170 |
|
df-se |
⊢ ( t++ ( 𝑅 ↾ 𝐴 ) Se 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 { 𝑢 ∈ 𝐴 ∣ 𝑢 t++ ( 𝑅 ↾ 𝐴 ) 𝑡 } ∈ V ) |
| 171 |
169 170
|
sylnibr |
⊢ ( Fin = V → ¬ t++ ( 𝑅 ↾ 𝐴 ) Se 𝐴 ) |
| 172 |
|
vex |
⊢ 𝑤 ∈ V |
| 173 |
|
vex |
⊢ 𝑧 ∈ V |
| 174 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 175 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = suc 𝑦 ↔ 𝑤 = suc 𝑦 ) ) |
| 176 |
174 175
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦 ) ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑦 ) ) ) |
| 177 |
|
suceq |
⊢ ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 ) |
| 178 |
177
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 = suc 𝑦 ↔ 𝑤 = suc 𝑧 ) ) |
| 179 |
178
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑦 ) ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) ) ) |
| 180 |
172 173 176 179 1
|
brab |
⊢ ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) ) |
| 181 |
180
|
biimpi |
⊢ ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) ) |
| 182 |
181
|
adantl |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 𝑅 𝑧 ) → ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) ) |
| 183 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) → 𝑤 ∈ 𝐴 ) |
| 184 |
180
|
biimpri |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) → 𝑤 𝑅 𝑧 ) |
| 185 |
183 184
|
jca |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) → ( 𝑤 ∈ 𝐴 ∧ 𝑤 𝑅 𝑧 ) ) |
| 186 |
182 185
|
impbii |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 = suc 𝑧 ) ) |
| 187 |
186
|
rabbia2 |
⊢ { 𝑤 ∈ 𝐴 ∣ 𝑤 𝑅 𝑧 } = { 𝑤 ∈ 𝐴 ∣ 𝑤 = suc 𝑧 } |
| 188 |
173
|
sucex |
⊢ suc 𝑧 ∈ V |
| 189 |
188
|
eueqi |
⊢ ∃! 𝑤 𝑤 = suc 𝑧 |
| 190 |
|
euabex |
⊢ ( ∃! 𝑤 𝑤 = suc 𝑧 → { 𝑤 ∣ 𝑤 = suc 𝑧 } ∈ V ) |
| 191 |
189 190
|
ax-mp |
⊢ { 𝑤 ∣ 𝑤 = suc 𝑧 } ∈ V |
| 192 |
|
rabssab |
⊢ { 𝑤 ∈ 𝐴 ∣ 𝑤 = suc 𝑧 } ⊆ { 𝑤 ∣ 𝑤 = suc 𝑧 } |
| 193 |
191 192
|
ssexi |
⊢ { 𝑤 ∈ 𝐴 ∣ 𝑤 = suc 𝑧 } ∈ V |
| 194 |
187 193
|
eqeltri |
⊢ { 𝑤 ∈ 𝐴 ∣ 𝑤 𝑅 𝑧 } ∈ V |
| 195 |
194
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝐴 { 𝑤 ∈ 𝐴 ∣ 𝑤 𝑅 𝑧 } ∈ V |
| 196 |
|
df-se |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 { 𝑤 ∈ 𝐴 ∣ 𝑤 𝑅 𝑧 } ∈ V ) |
| 197 |
195 196
|
mpbir |
⊢ 𝑅 Se 𝐴 |
| 198 |
171 197
|
jctil |
⊢ ( Fin = V → ( 𝑅 Se 𝐴 ∧ ¬ t++ ( 𝑅 ↾ 𝐴 ) Se 𝐴 ) ) |