| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvnttrclselem3.1 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦 ) } |
| 2 |
|
fineqvnttrclselem3.2 |
⊢ 𝐴 = ω |
| 3 |
|
fineqvnttrclselem3.3 |
⊢ 𝐹 = ( 𝑣 ∈ suc suc 𝑁 ↦ ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } ) |
| 4 |
|
oveq1 |
⊢ ( 𝑣 = 𝑎 → ( 𝑣 +o 𝑑 ) = ( 𝑎 +o 𝑑 ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑣 = 𝑎 → ( ( 𝑣 +o 𝑑 ) = 𝐵 ↔ ( 𝑎 +o 𝑑 ) = 𝐵 ) ) |
| 6 |
5
|
rabbidv |
⊢ ( 𝑣 = 𝑎 → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = { 𝑑 ∈ On ∣ ( 𝑎 +o 𝑑 ) = 𝐵 } ) |
| 7 |
6
|
unieqd |
⊢ ( 𝑣 = 𝑎 → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = ∪ { 𝑑 ∈ On ∣ ( 𝑎 +o 𝑑 ) = 𝐵 } ) |
| 8 |
|
elelsuc |
⊢ ( 𝑎 ∈ suc 𝑁 → 𝑎 ∈ suc suc 𝑁 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑎 ∈ suc 𝑁 ) → 𝑎 ∈ suc suc 𝑁 ) |
| 10 |
|
fineqvnttrclselem1 |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( 𝑎 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑎 ∈ suc 𝑁 ) → ∪ { 𝑑 ∈ On ∣ ( 𝑎 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 12 |
3 7 9 11
|
fvmptd3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ 𝑎 ) = ∪ { 𝑑 ∈ On ∣ ( 𝑎 +o 𝑑 ) = 𝐵 } ) |
| 13 |
12 11
|
eqeltrd |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ 𝑎 ) ∈ ω ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ 𝑎 ) ∈ ω ) |
| 15 |
14 2
|
eleqtrrdi |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ) |
| 16 |
3
|
fineqvnttrclselem2 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc suc 𝑁 ) → ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = 𝐵 ) |
| 17 |
8 16
|
syl3an3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = 𝐵 ) |
| 18 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → 𝐵 ∈ ω ) |
| 19 |
|
elnn |
⊢ ( ( 𝑁 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑁 ∈ ω ) |
| 20 |
19
|
ancoms |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑁 ∈ 𝐵 ) → 𝑁 ∈ ω ) |
| 21 |
18 20
|
sylan |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → 𝑁 ∈ ω ) |
| 22 |
|
peano2 |
⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) |
| 23 |
|
nnord |
⊢ ( suc 𝑁 ∈ ω → Ord suc 𝑁 ) |
| 24 |
|
ordsucelsuc |
⊢ ( Ord suc 𝑁 → ( 𝑎 ∈ suc 𝑁 ↔ suc 𝑎 ∈ suc suc 𝑁 ) ) |
| 25 |
22 23 24
|
3syl |
⊢ ( 𝑁 ∈ ω → ( 𝑎 ∈ suc 𝑁 ↔ suc 𝑎 ∈ suc suc 𝑁 ) ) |
| 26 |
25
|
biimpa |
⊢ ( ( 𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁 ) → suc 𝑎 ∈ suc suc 𝑁 ) |
| 27 |
21 26
|
stoic3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → suc 𝑎 ∈ suc suc 𝑁 ) |
| 28 |
3
|
fineqvnttrclselem2 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ suc 𝑎 ∈ suc suc 𝑁 ) → ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) = 𝐵 ) |
| 29 |
27 28
|
syld3an3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) = 𝐵 ) |
| 30 |
17 29
|
eqtr4d |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 31 |
21 22
|
syl |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → suc 𝑁 ∈ ω ) |
| 32 |
|
elnn |
⊢ ( ( 𝑎 ∈ suc 𝑁 ∧ suc 𝑁 ∈ ω ) → 𝑎 ∈ ω ) |
| 33 |
32
|
ancoms |
⊢ ( ( suc 𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁 ) → 𝑎 ∈ ω ) |
| 34 |
31 33
|
stoic3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → 𝑎 ∈ ω ) |
| 35 |
21
|
3adant3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → 𝑁 ∈ ω ) |
| 36 |
|
oveq1 |
⊢ ( 𝑣 = suc 𝑎 → ( 𝑣 +o 𝑑 ) = ( suc 𝑎 +o 𝑑 ) ) |
| 37 |
36
|
eqeq1d |
⊢ ( 𝑣 = suc 𝑎 → ( ( 𝑣 +o 𝑑 ) = 𝐵 ↔ ( suc 𝑎 +o 𝑑 ) = 𝐵 ) ) |
| 38 |
37
|
rabbidv |
⊢ ( 𝑣 = suc 𝑎 → { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = { 𝑑 ∈ On ∣ ( suc 𝑎 +o 𝑑 ) = 𝐵 } ) |
| 39 |
38
|
unieqd |
⊢ ( 𝑣 = suc 𝑎 → ∪ { 𝑑 ∈ On ∣ ( 𝑣 +o 𝑑 ) = 𝐵 } = ∪ { 𝑑 ∈ On ∣ ( suc 𝑎 +o 𝑑 ) = 𝐵 } ) |
| 40 |
26
|
3adant1 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁 ) → suc 𝑎 ∈ suc suc 𝑁 ) |
| 41 |
|
fineqvnttrclselem1 |
⊢ ( 𝐵 ∈ ( ω ∖ 1o ) → ∪ { 𝑑 ∈ On ∣ ( suc 𝑎 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 42 |
41
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁 ) → ∪ { 𝑑 ∈ On ∣ ( suc 𝑎 +o 𝑑 ) = 𝐵 } ∈ ω ) |
| 43 |
3 39 40 42
|
fvmptd3 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ suc 𝑎 ) = ∪ { 𝑑 ∈ On ∣ ( suc 𝑎 +o 𝑑 ) = 𝐵 } ) |
| 44 |
43 42
|
eqeltrd |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ ω ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) |
| 45 |
35 44
|
syld3an2 |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) |
| 46 |
|
nnacom |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) = ( ( 𝐹 ‘ suc 𝑎 ) +o 𝑎 ) ) |
| 47 |
46
|
suceqd |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → suc ( 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) = suc ( ( 𝐹 ‘ suc 𝑎 ) +o 𝑎 ) ) |
| 48 |
|
nnasuc |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) = suc ( 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 49 |
|
nnasuc |
⊢ ( ( ( 𝐹 ‘ suc 𝑎 ) ∈ ω ∧ 𝑎 ∈ ω ) → ( ( 𝐹 ‘ suc 𝑎 ) +o suc 𝑎 ) = suc ( ( 𝐹 ‘ suc 𝑎 ) +o 𝑎 ) ) |
| 50 |
49
|
ancoms |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( ( 𝐹 ‘ suc 𝑎 ) +o suc 𝑎 ) = suc ( ( 𝐹 ‘ suc 𝑎 ) +o 𝑎 ) ) |
| 51 |
47 48 50
|
3eqtr4d |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) = ( ( 𝐹 ‘ suc 𝑎 ) +o suc 𝑎 ) ) |
| 52 |
|
peano2 |
⊢ ( 𝑎 ∈ ω → suc 𝑎 ∈ ω ) |
| 53 |
|
nnacom |
⊢ ( ( suc 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) = ( ( 𝐹 ‘ suc 𝑎 ) +o suc 𝑎 ) ) |
| 54 |
52 53
|
sylan |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) = ( ( 𝐹 ‘ suc 𝑎 ) +o suc 𝑎 ) ) |
| 55 |
51 54
|
eqtr4d |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) = ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 56 |
55
|
3adant2 |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ 𝑎 ) ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) = ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 57 |
56
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ 𝑎 ) ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) ↔ ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ) ) |
| 58 |
|
peano2 |
⊢ ( ( 𝐹 ‘ suc 𝑎 ) ∈ ω → suc ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) |
| 59 |
|
nnacan |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ 𝑎 ) ∈ ω ∧ suc ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) ↔ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 60 |
58 59
|
syl3an3 |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ 𝑎 ) ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( 𝑎 +o suc ( 𝐹 ‘ suc 𝑎 ) ) ↔ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 61 |
57 60
|
bitr3d |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝐹 ‘ 𝑎 ) ∈ ω ∧ ( 𝐹 ‘ suc 𝑎 ) ∈ ω ) → ( ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ↔ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 62 |
34 14 45 61
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( ( 𝑎 +o ( 𝐹 ‘ 𝑎 ) ) = ( suc 𝑎 +o ( 𝐹 ‘ suc 𝑎 ) ) ↔ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 63 |
30 62
|
mpbid |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) |
| 64 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑎 ) ∈ V |
| 65 |
|
fvex |
⊢ ( 𝐹 ‘ suc 𝑎 ) ∈ V |
| 66 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 67 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 = suc 𝑦 ↔ ( 𝐹 ‘ 𝑎 ) = suc 𝑦 ) ) |
| 68 |
66 67
|
anbi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑎 ) = suc 𝑦 ) ) ) |
| 69 |
|
suceq |
⊢ ( 𝑦 = ( 𝐹 ‘ suc 𝑎 ) → suc 𝑦 = suc ( 𝐹 ‘ suc 𝑎 ) ) |
| 70 |
69
|
eqeq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ suc 𝑎 ) → ( ( 𝐹 ‘ 𝑎 ) = suc 𝑦 ↔ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 71 |
70
|
anbi2d |
⊢ ( 𝑦 = ( 𝐹 ‘ suc 𝑎 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑎 ) = suc 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) ) |
| 72 |
64 65 68 71 1
|
brab |
⊢ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ suc 𝑎 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 73 |
15 63 72
|
sylanbrc |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ∧ 𝑎 ∈ suc 𝑁 ) → ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ suc 𝑎 ) ) |
| 74 |
73
|
3expia |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → ( 𝑎 ∈ suc 𝑁 → ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ suc 𝑎 ) ) ) |
| 75 |
74
|
ralrimiv |
⊢ ( ( 𝐵 ∈ ( ω ∖ 1o ) ∧ 𝑁 ∈ 𝐵 ) → ∀ 𝑎 ∈ suc 𝑁 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ suc 𝑎 ) ) |