| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvnttrclselem3.1 |
|- R = { <. x , y >. | ( x e. A /\ x = suc y ) } |
| 2 |
|
fineqvnttrclselem3.2 |
|- A = _om |
| 3 |
|
fineqvnttrclselem3.3 |
|- F = ( v e. suc suc N |-> U. { d e. On | ( v +o d ) = B } ) |
| 4 |
|
oveq1 |
|- ( v = a -> ( v +o d ) = ( a +o d ) ) |
| 5 |
4
|
eqeq1d |
|- ( v = a -> ( ( v +o d ) = B <-> ( a +o d ) = B ) ) |
| 6 |
5
|
rabbidv |
|- ( v = a -> { d e. On | ( v +o d ) = B } = { d e. On | ( a +o d ) = B } ) |
| 7 |
6
|
unieqd |
|- ( v = a -> U. { d e. On | ( v +o d ) = B } = U. { d e. On | ( a +o d ) = B } ) |
| 8 |
|
elelsuc |
|- ( a e. suc N -> a e. suc suc N ) |
| 9 |
8
|
adantl |
|- ( ( B e. ( _om \ 1o ) /\ a e. suc N ) -> a e. suc suc N ) |
| 10 |
|
fineqvnttrclselem1 |
|- ( B e. ( _om \ 1o ) -> U. { d e. On | ( a +o d ) = B } e. _om ) |
| 11 |
10
|
adantr |
|- ( ( B e. ( _om \ 1o ) /\ a e. suc N ) -> U. { d e. On | ( a +o d ) = B } e. _om ) |
| 12 |
3 7 9 11
|
fvmptd3 |
|- ( ( B e. ( _om \ 1o ) /\ a e. suc N ) -> ( F ` a ) = U. { d e. On | ( a +o d ) = B } ) |
| 13 |
12 11
|
eqeltrd |
|- ( ( B e. ( _om \ 1o ) /\ a e. suc N ) -> ( F ` a ) e. _om ) |
| 14 |
13
|
3adant2 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( F ` a ) e. _om ) |
| 15 |
14 2
|
eleqtrrdi |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( F ` a ) e. A ) |
| 16 |
3
|
fineqvnttrclselem2 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc suc N ) -> ( a +o ( F ` a ) ) = B ) |
| 17 |
8 16
|
syl3an3 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( a +o ( F ` a ) ) = B ) |
| 18 |
|
eldifi |
|- ( B e. ( _om \ 1o ) -> B e. _om ) |
| 19 |
|
elnn |
|- ( ( N e. B /\ B e. _om ) -> N e. _om ) |
| 20 |
19
|
ancoms |
|- ( ( B e. _om /\ N e. B ) -> N e. _om ) |
| 21 |
18 20
|
sylan |
|- ( ( B e. ( _om \ 1o ) /\ N e. B ) -> N e. _om ) |
| 22 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
| 23 |
|
nnord |
|- ( suc N e. _om -> Ord suc N ) |
| 24 |
|
ordsucelsuc |
|- ( Ord suc N -> ( a e. suc N <-> suc a e. suc suc N ) ) |
| 25 |
22 23 24
|
3syl |
|- ( N e. _om -> ( a e. suc N <-> suc a e. suc suc N ) ) |
| 26 |
25
|
biimpa |
|- ( ( N e. _om /\ a e. suc N ) -> suc a e. suc suc N ) |
| 27 |
21 26
|
stoic3 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> suc a e. suc suc N ) |
| 28 |
3
|
fineqvnttrclselem2 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ suc a e. suc suc N ) -> ( suc a +o ( F ` suc a ) ) = B ) |
| 29 |
27 28
|
syld3an3 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( suc a +o ( F ` suc a ) ) = B ) |
| 30 |
17 29
|
eqtr4d |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( a +o ( F ` a ) ) = ( suc a +o ( F ` suc a ) ) ) |
| 31 |
21 22
|
syl |
|- ( ( B e. ( _om \ 1o ) /\ N e. B ) -> suc N e. _om ) |
| 32 |
|
elnn |
|- ( ( a e. suc N /\ suc N e. _om ) -> a e. _om ) |
| 33 |
32
|
ancoms |
|- ( ( suc N e. _om /\ a e. suc N ) -> a e. _om ) |
| 34 |
31 33
|
stoic3 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> a e. _om ) |
| 35 |
21
|
3adant3 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> N e. _om ) |
| 36 |
|
oveq1 |
|- ( v = suc a -> ( v +o d ) = ( suc a +o d ) ) |
| 37 |
36
|
eqeq1d |
|- ( v = suc a -> ( ( v +o d ) = B <-> ( suc a +o d ) = B ) ) |
| 38 |
37
|
rabbidv |
|- ( v = suc a -> { d e. On | ( v +o d ) = B } = { d e. On | ( suc a +o d ) = B } ) |
| 39 |
38
|
unieqd |
|- ( v = suc a -> U. { d e. On | ( v +o d ) = B } = U. { d e. On | ( suc a +o d ) = B } ) |
| 40 |
26
|
3adant1 |
|- ( ( B e. ( _om \ 1o ) /\ N e. _om /\ a e. suc N ) -> suc a e. suc suc N ) |
| 41 |
|
fineqvnttrclselem1 |
|- ( B e. ( _om \ 1o ) -> U. { d e. On | ( suc a +o d ) = B } e. _om ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( B e. ( _om \ 1o ) /\ N e. _om /\ a e. suc N ) -> U. { d e. On | ( suc a +o d ) = B } e. _om ) |
| 43 |
3 39 40 42
|
fvmptd3 |
|- ( ( B e. ( _om \ 1o ) /\ N e. _om /\ a e. suc N ) -> ( F ` suc a ) = U. { d e. On | ( suc a +o d ) = B } ) |
| 44 |
43 42
|
eqeltrd |
|- ( ( B e. ( _om \ 1o ) /\ N e. _om /\ a e. suc N ) -> ( F ` suc a ) e. _om ) |
| 45 |
35 44
|
syld3an2 |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( F ` suc a ) e. _om ) |
| 46 |
|
nnacom |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> ( a +o ( F ` suc a ) ) = ( ( F ` suc a ) +o a ) ) |
| 47 |
46
|
suceqd |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> suc ( a +o ( F ` suc a ) ) = suc ( ( F ` suc a ) +o a ) ) |
| 48 |
|
nnasuc |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> ( a +o suc ( F ` suc a ) ) = suc ( a +o ( F ` suc a ) ) ) |
| 49 |
|
nnasuc |
|- ( ( ( F ` suc a ) e. _om /\ a e. _om ) -> ( ( F ` suc a ) +o suc a ) = suc ( ( F ` suc a ) +o a ) ) |
| 50 |
49
|
ancoms |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> ( ( F ` suc a ) +o suc a ) = suc ( ( F ` suc a ) +o a ) ) |
| 51 |
47 48 50
|
3eqtr4d |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> ( a +o suc ( F ` suc a ) ) = ( ( F ` suc a ) +o suc a ) ) |
| 52 |
|
peano2 |
|- ( a e. _om -> suc a e. _om ) |
| 53 |
|
nnacom |
|- ( ( suc a e. _om /\ ( F ` suc a ) e. _om ) -> ( suc a +o ( F ` suc a ) ) = ( ( F ` suc a ) +o suc a ) ) |
| 54 |
52 53
|
sylan |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> ( suc a +o ( F ` suc a ) ) = ( ( F ` suc a ) +o suc a ) ) |
| 55 |
51 54
|
eqtr4d |
|- ( ( a e. _om /\ ( F ` suc a ) e. _om ) -> ( a +o suc ( F ` suc a ) ) = ( suc a +o ( F ` suc a ) ) ) |
| 56 |
55
|
3adant2 |
|- ( ( a e. _om /\ ( F ` a ) e. _om /\ ( F ` suc a ) e. _om ) -> ( a +o suc ( F ` suc a ) ) = ( suc a +o ( F ` suc a ) ) ) |
| 57 |
56
|
eqeq2d |
|- ( ( a e. _om /\ ( F ` a ) e. _om /\ ( F ` suc a ) e. _om ) -> ( ( a +o ( F ` a ) ) = ( a +o suc ( F ` suc a ) ) <-> ( a +o ( F ` a ) ) = ( suc a +o ( F ` suc a ) ) ) ) |
| 58 |
|
peano2 |
|- ( ( F ` suc a ) e. _om -> suc ( F ` suc a ) e. _om ) |
| 59 |
|
nnacan |
|- ( ( a e. _om /\ ( F ` a ) e. _om /\ suc ( F ` suc a ) e. _om ) -> ( ( a +o ( F ` a ) ) = ( a +o suc ( F ` suc a ) ) <-> ( F ` a ) = suc ( F ` suc a ) ) ) |
| 60 |
58 59
|
syl3an3 |
|- ( ( a e. _om /\ ( F ` a ) e. _om /\ ( F ` suc a ) e. _om ) -> ( ( a +o ( F ` a ) ) = ( a +o suc ( F ` suc a ) ) <-> ( F ` a ) = suc ( F ` suc a ) ) ) |
| 61 |
57 60
|
bitr3d |
|- ( ( a e. _om /\ ( F ` a ) e. _om /\ ( F ` suc a ) e. _om ) -> ( ( a +o ( F ` a ) ) = ( suc a +o ( F ` suc a ) ) <-> ( F ` a ) = suc ( F ` suc a ) ) ) |
| 62 |
34 14 45 61
|
syl3anc |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( ( a +o ( F ` a ) ) = ( suc a +o ( F ` suc a ) ) <-> ( F ` a ) = suc ( F ` suc a ) ) ) |
| 63 |
30 62
|
mpbid |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( F ` a ) = suc ( F ` suc a ) ) |
| 64 |
|
fvex |
|- ( F ` a ) e. _V |
| 65 |
|
fvex |
|- ( F ` suc a ) e. _V |
| 66 |
|
eleq1 |
|- ( x = ( F ` a ) -> ( x e. A <-> ( F ` a ) e. A ) ) |
| 67 |
|
eqeq1 |
|- ( x = ( F ` a ) -> ( x = suc y <-> ( F ` a ) = suc y ) ) |
| 68 |
66 67
|
anbi12d |
|- ( x = ( F ` a ) -> ( ( x e. A /\ x = suc y ) <-> ( ( F ` a ) e. A /\ ( F ` a ) = suc y ) ) ) |
| 69 |
|
suceq |
|- ( y = ( F ` suc a ) -> suc y = suc ( F ` suc a ) ) |
| 70 |
69
|
eqeq2d |
|- ( y = ( F ` suc a ) -> ( ( F ` a ) = suc y <-> ( F ` a ) = suc ( F ` suc a ) ) ) |
| 71 |
70
|
anbi2d |
|- ( y = ( F ` suc a ) -> ( ( ( F ` a ) e. A /\ ( F ` a ) = suc y ) <-> ( ( F ` a ) e. A /\ ( F ` a ) = suc ( F ` suc a ) ) ) ) |
| 72 |
64 65 68 71 1
|
brab |
|- ( ( F ` a ) R ( F ` suc a ) <-> ( ( F ` a ) e. A /\ ( F ` a ) = suc ( F ` suc a ) ) ) |
| 73 |
15 63 72
|
sylanbrc |
|- ( ( B e. ( _om \ 1o ) /\ N e. B /\ a e. suc N ) -> ( F ` a ) R ( F ` suc a ) ) |
| 74 |
73
|
3expia |
|- ( ( B e. ( _om \ 1o ) /\ N e. B ) -> ( a e. suc N -> ( F ` a ) R ( F ` suc a ) ) ) |
| 75 |
74
|
ralrimiv |
|- ( ( B e. ( _om \ 1o ) /\ N e. B ) -> A. a e. suc N ( F ` a ) R ( F ` suc a ) ) |