Metamath Proof Explorer


Theorem fineqvnttrclselem3

Description: Lemma for fineqvnttrclse . (Contributed by BTernaryTau, 12-Jan-2026)

Ref Expression
Hypotheses fineqvnttrclselem3.1 R = x y | x A x = suc y
fineqvnttrclselem3.2 A = ω
fineqvnttrclselem3.3 F = v suc suc N d On | v + 𝑜 d = B
Assertion fineqvnttrclselem3 B ω 1 𝑜 N B a suc N F a R F suc a

Proof

Step Hyp Ref Expression
1 fineqvnttrclselem3.1 R = x y | x A x = suc y
2 fineqvnttrclselem3.2 A = ω
3 fineqvnttrclselem3.3 F = v suc suc N d On | v + 𝑜 d = B
4 oveq1 v = a v + 𝑜 d = a + 𝑜 d
5 4 eqeq1d v = a v + 𝑜 d = B a + 𝑜 d = B
6 5 rabbidv v = a d On | v + 𝑜 d = B = d On | a + 𝑜 d = B
7 6 unieqd v = a d On | v + 𝑜 d = B = d On | a + 𝑜 d = B
8 elelsuc a suc N a suc suc N
9 8 adantl B ω 1 𝑜 a suc N a suc suc N
10 fineqvnttrclselem1 B ω 1 𝑜 d On | a + 𝑜 d = B ω
11 10 adantr B ω 1 𝑜 a suc N d On | a + 𝑜 d = B ω
12 3 7 9 11 fvmptd3 B ω 1 𝑜 a suc N F a = d On | a + 𝑜 d = B
13 12 11 eqeltrd B ω 1 𝑜 a suc N F a ω
14 13 3adant2 B ω 1 𝑜 N B a suc N F a ω
15 14 2 eleqtrrdi B ω 1 𝑜 N B a suc N F a A
16 3 fineqvnttrclselem2 B ω 1 𝑜 N B a suc suc N a + 𝑜 F a = B
17 8 16 syl3an3 B ω 1 𝑜 N B a suc N a + 𝑜 F a = B
18 eldifi B ω 1 𝑜 B ω
19 elnn N B B ω N ω
20 19 ancoms B ω N B N ω
21 18 20 sylan B ω 1 𝑜 N B N ω
22 peano2 N ω suc N ω
23 nnord suc N ω Ord suc N
24 ordsucelsuc Ord suc N a suc N suc a suc suc N
25 22 23 24 3syl N ω a suc N suc a suc suc N
26 25 biimpa N ω a suc N suc a suc suc N
27 21 26 stoic3 B ω 1 𝑜 N B a suc N suc a suc suc N
28 3 fineqvnttrclselem2 B ω 1 𝑜 N B suc a suc suc N suc a + 𝑜 F suc a = B
29 27 28 syld3an3 B ω 1 𝑜 N B a suc N suc a + 𝑜 F suc a = B
30 17 29 eqtr4d B ω 1 𝑜 N B a suc N a + 𝑜 F a = suc a + 𝑜 F suc a
31 21 22 syl B ω 1 𝑜 N B suc N ω
32 elnn a suc N suc N ω a ω
33 32 ancoms suc N ω a suc N a ω
34 31 33 stoic3 B ω 1 𝑜 N B a suc N a ω
35 21 3adant3 B ω 1 𝑜 N B a suc N N ω
36 oveq1 v = suc a v + 𝑜 d = suc a + 𝑜 d
37 36 eqeq1d v = suc a v + 𝑜 d = B suc a + 𝑜 d = B
38 37 rabbidv v = suc a d On | v + 𝑜 d = B = d On | suc a + 𝑜 d = B
39 38 unieqd v = suc a d On | v + 𝑜 d = B = d On | suc a + 𝑜 d = B
40 26 3adant1 B ω 1 𝑜 N ω a suc N suc a suc suc N
41 fineqvnttrclselem1 B ω 1 𝑜 d On | suc a + 𝑜 d = B ω
42 41 3ad2ant1 B ω 1 𝑜 N ω a suc N d On | suc a + 𝑜 d = B ω
43 3 39 40 42 fvmptd3 B ω 1 𝑜 N ω a suc N F suc a = d On | suc a + 𝑜 d = B
44 43 42 eqeltrd B ω 1 𝑜 N ω a suc N F suc a ω
45 35 44 syld3an2 B ω 1 𝑜 N B a suc N F suc a ω
46 nnacom a ω F suc a ω a + 𝑜 F suc a = F suc a + 𝑜 a
47 46 suceqd a ω F suc a ω suc a + 𝑜 F suc a = suc F suc a + 𝑜 a
48 nnasuc a ω F suc a ω a + 𝑜 suc F suc a = suc a + 𝑜 F suc a
49 nnasuc F suc a ω a ω F suc a + 𝑜 suc a = suc F suc a + 𝑜 a
50 49 ancoms a ω F suc a ω F suc a + 𝑜 suc a = suc F suc a + 𝑜 a
51 47 48 50 3eqtr4d a ω F suc a ω a + 𝑜 suc F suc a = F suc a + 𝑜 suc a
52 peano2 a ω suc a ω
53 nnacom suc a ω F suc a ω suc a + 𝑜 F suc a = F suc a + 𝑜 suc a
54 52 53 sylan a ω F suc a ω suc a + 𝑜 F suc a = F suc a + 𝑜 suc a
55 51 54 eqtr4d a ω F suc a ω a + 𝑜 suc F suc a = suc a + 𝑜 F suc a
56 55 3adant2 a ω F a ω F suc a ω a + 𝑜 suc F suc a = suc a + 𝑜 F suc a
57 56 eqeq2d a ω F a ω F suc a ω a + 𝑜 F a = a + 𝑜 suc F suc a a + 𝑜 F a = suc a + 𝑜 F suc a
58 peano2 F suc a ω suc F suc a ω
59 nnacan a ω F a ω suc F suc a ω a + 𝑜 F a = a + 𝑜 suc F suc a F a = suc F suc a
60 58 59 syl3an3 a ω F a ω F suc a ω a + 𝑜 F a = a + 𝑜 suc F suc a F a = suc F suc a
61 57 60 bitr3d a ω F a ω F suc a ω a + 𝑜 F a = suc a + 𝑜 F suc a F a = suc F suc a
62 34 14 45 61 syl3anc B ω 1 𝑜 N B a suc N a + 𝑜 F a = suc a + 𝑜 F suc a F a = suc F suc a
63 30 62 mpbid B ω 1 𝑜 N B a suc N F a = suc F suc a
64 fvex F a V
65 fvex F suc a V
66 eleq1 x = F a x A F a A
67 eqeq1 x = F a x = suc y F a = suc y
68 66 67 anbi12d x = F a x A x = suc y F a A F a = suc y
69 suceq y = F suc a suc y = suc F suc a
70 69 eqeq2d y = F suc a F a = suc y F a = suc F suc a
71 70 anbi2d y = F suc a F a A F a = suc y F a A F a = suc F suc a
72 64 65 68 71 1 brab F a R F suc a F a A F a = suc F suc a
73 15 63 72 sylanbrc B ω 1 𝑜 N B a suc N F a R F suc a
74 73 3expia B ω 1 𝑜 N B a suc N F a R F suc a
75 74 ralrimiv B ω 1 𝑜 N B a suc N F a R F suc a