| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvnttrclselem3.1 |
|
| 2 |
|
fineqvnttrclselem3.2 |
|
| 3 |
|
fineqvnttrclselem3.3 |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
5
|
rabbidv |
|
| 7 |
6
|
unieqd |
|
| 8 |
|
elelsuc |
|
| 9 |
8
|
adantl |
|
| 10 |
|
fineqvnttrclselem1 |
|
| 11 |
10
|
adantr |
|
| 12 |
3 7 9 11
|
fvmptd3 |
|
| 13 |
12 11
|
eqeltrd |
|
| 14 |
13
|
3adant2 |
|
| 15 |
14 2
|
eleqtrrdi |
|
| 16 |
3
|
fineqvnttrclselem2 |
|
| 17 |
8 16
|
syl3an3 |
|
| 18 |
|
eldifi |
|
| 19 |
|
elnn |
|
| 20 |
19
|
ancoms |
|
| 21 |
18 20
|
sylan |
|
| 22 |
|
peano2 |
|
| 23 |
|
nnord |
|
| 24 |
|
ordsucelsuc |
|
| 25 |
22 23 24
|
3syl |
|
| 26 |
25
|
biimpa |
|
| 27 |
21 26
|
stoic3 |
|
| 28 |
3
|
fineqvnttrclselem2 |
|
| 29 |
27 28
|
syld3an3 |
|
| 30 |
17 29
|
eqtr4d |
|
| 31 |
21 22
|
syl |
|
| 32 |
|
elnn |
|
| 33 |
32
|
ancoms |
|
| 34 |
31 33
|
stoic3 |
|
| 35 |
21
|
3adant3 |
|
| 36 |
|
oveq1 |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
37
|
rabbidv |
|
| 39 |
38
|
unieqd |
|
| 40 |
26
|
3adant1 |
|
| 41 |
|
fineqvnttrclselem1 |
|
| 42 |
41
|
3ad2ant1 |
|
| 43 |
3 39 40 42
|
fvmptd3 |
|
| 44 |
43 42
|
eqeltrd |
|
| 45 |
35 44
|
syld3an2 |
|
| 46 |
|
nnacom |
|
| 47 |
46
|
suceqd |
|
| 48 |
|
nnasuc |
|
| 49 |
|
nnasuc |
|
| 50 |
49
|
ancoms |
|
| 51 |
47 48 50
|
3eqtr4d |
|
| 52 |
|
peano2 |
|
| 53 |
|
nnacom |
|
| 54 |
52 53
|
sylan |
|
| 55 |
51 54
|
eqtr4d |
|
| 56 |
55
|
3adant2 |
|
| 57 |
56
|
eqeq2d |
|
| 58 |
|
peano2 |
|
| 59 |
|
nnacan |
|
| 60 |
58 59
|
syl3an3 |
|
| 61 |
57 60
|
bitr3d |
|
| 62 |
34 14 45 61
|
syl3anc |
|
| 63 |
30 62
|
mpbid |
|
| 64 |
|
fvex |
|
| 65 |
|
fvex |
|
| 66 |
|
eleq1 |
|
| 67 |
|
eqeq1 |
|
| 68 |
66 67
|
anbi12d |
|
| 69 |
|
suceq |
|
| 70 |
69
|
eqeq2d |
|
| 71 |
70
|
anbi2d |
|
| 72 |
64 65 68 71 1
|
brab |
|
| 73 |
15 63 72
|
sylanbrc |
|
| 74 |
73
|
3expia |
|
| 75 |
74
|
ralrimiv |
|