Metamath Proof Explorer


Theorem fineqvnttrclse

Description: A counterexample demonstrating that ttrclse does not hold when all sets are finite. (Contributed by BTernaryTau, 12-Jan-2026)

Ref Expression
Hypotheses fineqvnttrclse.1 R = x y | x A x = suc y
fineqvnttrclse.2 A = ω
Assertion fineqvnttrclse Fin = V R Se A ¬ t++ R A Se A

Proof

Step Hyp Ref Expression
1 fineqvnttrclse.1 R = x y | x A x = suc y
2 fineqvnttrclse.2 A = ω
3 ominf ¬ ω Fin
4 1onn 1 𝑜 ω
5 nnfi 1 𝑜 ω 1 𝑜 Fin
6 4 5 ax-mp 1 𝑜 Fin
7 difinf ¬ ω Fin 1 𝑜 Fin ¬ ω 1 𝑜 Fin
8 3 6 7 mp2an ¬ ω 1 𝑜 Fin
9 eleq2 Fin = V ω 1 𝑜 Fin ω 1 𝑜 V
10 8 9 mtbii Fin = V ¬ ω 1 𝑜 V
11 difss ω 1 𝑜 ω
12 11 2 sseqtrri ω 1 𝑜 A
13 eldifi u ω 1 𝑜 u ω
14 eldifn u ω 1 𝑜 ¬ u 1 𝑜
15 0lt1o 1 𝑜
16 eleq1 u = u 1 𝑜 1 𝑜
17 15 16 mpbiri u = u 1 𝑜
18 17 necon3bi ¬ u 1 𝑜 u
19 14 18 syl u ω 1 𝑜 u
20 nnsuc u ω u n ω u = suc n
21 eqcom u = suc n suc n = u
22 21 rexbii n ω u = suc n n ω suc n = u
23 20 22 sylib u ω u n ω suc n = u
24 13 19 23 syl2anc u ω 1 𝑜 n ω suc n = u
25 sucexg n V suc n V
26 25 elv suc n V
27 26 sucex suc suc n V
28 27 mptex v suc suc n d On | v + 𝑜 d = u V
29 28 a1i u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u V
30 fineqvnttrclselem1 u ω 1 𝑜 d On | v + 𝑜 d = u ω
31 30 elexd u ω 1 𝑜 d On | v + 𝑜 d = u V
32 31 ralrimivw u ω 1 𝑜 v suc suc n d On | v + 𝑜 d = u V
33 eqid v suc suc n d On | v + 𝑜 d = u = v suc suc n d On | v + 𝑜 d = u
34 33 fnmpt v suc suc n d On | v + 𝑜 d = u V v suc suc n d On | v + 𝑜 d = u Fn suc suc n
35 32 34 syl u ω 1 𝑜 v suc suc n d On | v + 𝑜 d = u Fn suc suc n
36 35 adantr u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u Fn suc suc n
37 nnon u ω u On
38 13 37 syl u ω 1 𝑜 u On
39 eloni u On Ord u
40 38 39 syl u ω 1 𝑜 Ord u
41 40 adantr u ω 1 𝑜 suc n = u Ord u
42 ordeq suc n = u Ord suc n Ord u
43 42 adantl u ω 1 𝑜 suc n = u Ord suc n Ord u
44 41 43 mpbird u ω 1 𝑜 suc n = u Ord suc n
45 0elsuc Ord suc n suc suc n
46 44 45 syl u ω 1 𝑜 suc n = u suc suc n
47 simpl u ω 1 𝑜 suc n = u u ω 1 𝑜
48 oveq1 v = v + 𝑜 d = + 𝑜 d
49 48 eqeq1d v = v + 𝑜 d = u + 𝑜 d = u
50 49 rabbidv v = d On | v + 𝑜 d = u = d On | + 𝑜 d = u
51 50 unieqd v = d On | v + 𝑜 d = u = d On | + 𝑜 d = u
52 simpl suc suc n u ω 1 𝑜 suc suc n
53 fineqvnttrclselem1 u ω 1 𝑜 d On | + 𝑜 d = u ω
54 53 adantl suc suc n u ω 1 𝑜 d On | + 𝑜 d = u ω
55 33 51 52 54 fvmptd3 suc suc n u ω 1 𝑜 v suc suc n d On | v + 𝑜 d = u = d On | + 𝑜 d = u
56 oa0r d On + 𝑜 d = d
57 56 eqeq1d d On + 𝑜 d = u d = u
58 57 rabbiia d On | + 𝑜 d = u = d On | d = u
59 rabsn u On d On | d = u = u
60 58 59 eqtrid u On d On | + 𝑜 d = u = u
61 60 unieqd u On d On | + 𝑜 d = u = u
62 unisnv u = u
63 61 62 eqtrdi u On d On | + 𝑜 d = u = u
64 38 63 syl u ω 1 𝑜 d On | + 𝑜 d = u = u
65 64 adantl suc suc n u ω 1 𝑜 d On | + 𝑜 d = u = u
66 55 65 eqtrd suc suc n u ω 1 𝑜 v suc suc n d On | v + 𝑜 d = u = u
67 46 47 66 syl2anc u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u = u
68 oveq1 v = suc n v + 𝑜 d = suc n + 𝑜 d
69 68 eqeq1d v = suc n v + 𝑜 d = u suc n + 𝑜 d = u
70 69 rabbidv v = suc n d On | v + 𝑜 d = u = d On | suc n + 𝑜 d = u
71 70 unieqd v = suc n d On | v + 𝑜 d = u = d On | suc n + 𝑜 d = u
72 26 sucid suc n suc suc n
73 72 a1i u ω 1 𝑜 suc n suc suc n
74 fineqvnttrclselem1 u ω 1 𝑜 d On | suc n + 𝑜 d = u ω
75 33 71 73 74 fvmptd3 u ω 1 𝑜 v suc suc n d On | v + 𝑜 d = u suc n = d On | suc n + 𝑜 d = u
76 75 adantr u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u suc n = d On | suc n + 𝑜 d = u
77 oveq1 suc n = u suc n + 𝑜 d = u + 𝑜 d
78 77 eqeq1d suc n = u suc n + 𝑜 d = u u + 𝑜 d = u
79 78 ad2antlr u On suc n = u d On suc n + 𝑜 d = u u + 𝑜 d = u
80 oa0 u On u + 𝑜 = u
81 80 adantr u On d On u + 𝑜 = u
82 oveq2 d = u + 𝑜 d = u + 𝑜
83 82 eqeq1d d = u + 𝑜 d = u u + 𝑜 = u
84 81 83 syl5ibrcom u On d On d = u + 𝑜 d = u
85 oveq2 s = d u + 𝑜 s = u + 𝑜 d
86 85 eqeq1d s = d u + 𝑜 s = u u + 𝑜 d = u
87 oveq2 s = u + 𝑜 s = u + 𝑜
88 87 eqeq1d s = u + 𝑜 s = u u + 𝑜 = u
89 ssid u u
90 oawordeu u On u On u u ∃! s On u + 𝑜 s = u
91 89 90 mpan2 u On u On ∃! s On u + 𝑜 s = u
92 91 anidms u On ∃! s On u + 𝑜 s = u
93 92 3ad2ant1 u On d On u + 𝑜 d = u ∃! s On u + 𝑜 s = u
94 simp2 u On d On u + 𝑜 d = u d On
95 0elon On
96 95 a1i u On d On u + 𝑜 d = u On
97 simp3 u On d On u + 𝑜 d = u u + 𝑜 d = u
98 80 3ad2ant1 u On d On u + 𝑜 d = u u + 𝑜 = u
99 86 88 93 94 96 97 98 reu2eqd u On d On u + 𝑜 d = u d =
100 99 3expia u On d On u + 𝑜 d = u d =
101 84 100 impbid u On d On d = u + 𝑜 d = u
102 101 adantlr u On suc n = u d On d = u + 𝑜 d = u
103 79 102 bitr4d u On suc n = u d On suc n + 𝑜 d = u d =
104 103 rabbidva u On suc n = u d On | suc n + 𝑜 d = u = d On | d =
105 104 unieqd u On suc n = u d On | suc n + 𝑜 d = u = d On | d =
106 rabsn On d On | d = =
107 95 106 ax-mp d On | d = =
108 107 unieqi d On | d = =
109 0ex V
110 109 unisn =
111 108 110 eqtri d On | d = =
112 105 111 eqtrdi u On suc n = u d On | suc n + 𝑜 d = u =
113 38 112 sylan u ω 1 𝑜 suc n = u d On | suc n + 𝑜 d = u =
114 76 113 eqtrd u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u suc n =
115 67 114 jca u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u = u v suc suc n d On | v + 𝑜 d = u suc n =
116 vex n V
117 116 sucid n suc n
118 eleq2 suc n = u n suc n n u
119 117 118 mpbii suc n = u n u
120 oveq2 d = e v + 𝑜 d = v + 𝑜 e
121 120 eqeq1d d = e v + 𝑜 d = u v + 𝑜 e = u
122 121 cbvrabv d On | v + 𝑜 d = u = e On | v + 𝑜 e = u
123 122 unieqi d On | v + 𝑜 d = u = e On | v + 𝑜 e = u
124 123 mpteq2i v suc suc n d On | v + 𝑜 d = u = v suc suc n e On | v + 𝑜 e = u
125 1 2 124 fineqvnttrclselem3 u ω 1 𝑜 n u a suc n v suc suc n d On | v + 𝑜 d = u a R v suc suc n d On | v + 𝑜 d = u suc a
126 119 125 sylan2 u ω 1 𝑜 suc n = u a suc n v suc suc n d On | v + 𝑜 d = u a R v suc suc n d On | v + 𝑜 d = u suc a
127 36 115 126 3jca u ω 1 𝑜 suc n = u v suc suc n d On | v + 𝑜 d = u Fn suc suc n v suc suc n d On | v + 𝑜 d = u = u v suc suc n d On | v + 𝑜 d = u suc n = a suc n v suc suc n d On | v + 𝑜 d = u a R v suc suc n d On | v + 𝑜 d = u suc a
128 fneq1 f = v suc suc n d On | v + 𝑜 d = u f Fn suc suc n v suc suc n d On | v + 𝑜 d = u Fn suc suc n
129 fveq1 f = v suc suc n d On | v + 𝑜 d = u f = v suc suc n d On | v + 𝑜 d = u
130 129 eqeq1d f = v suc suc n d On | v + 𝑜 d = u f = u v suc suc n d On | v + 𝑜 d = u = u
131 fveq1 f = v suc suc n d On | v + 𝑜 d = u f suc n = v suc suc n d On | v + 𝑜 d = u suc n
132 131 eqeq1d f = v suc suc n d On | v + 𝑜 d = u f suc n = v suc suc n d On | v + 𝑜 d = u suc n =
133 130 132 anbi12d f = v suc suc n d On | v + 𝑜 d = u f = u f suc n = v suc suc n d On | v + 𝑜 d = u = u v suc suc n d On | v + 𝑜 d = u suc n =
134 fveq1 f = v suc suc n d On | v + 𝑜 d = u f a = v suc suc n d On | v + 𝑜 d = u a
135 fveq1 f = v suc suc n d On | v + 𝑜 d = u f suc a = v suc suc n d On | v + 𝑜 d = u suc a
136 134 135 breq12d f = v suc suc n d On | v + 𝑜 d = u f a R f suc a v suc suc n d On | v + 𝑜 d = u a R v suc suc n d On | v + 𝑜 d = u suc a
137 136 ralbidv f = v suc suc n d On | v + 𝑜 d = u a suc n f a R f suc a a suc n v suc suc n d On | v + 𝑜 d = u a R v suc suc n d On | v + 𝑜 d = u suc a
138 128 133 137 3anbi123d f = v suc suc n d On | v + 𝑜 d = u f Fn suc suc n f = u f suc n = a suc n f a R f suc a v suc suc n d On | v + 𝑜 d = u Fn suc suc n v suc suc n d On | v + 𝑜 d = u = u v suc suc n d On | v + 𝑜 d = u suc n = a suc n v suc suc n d On | v + 𝑜 d = u a R v suc suc n d On | v + 𝑜 d = u suc a
139 29 127 138 spcedv u ω 1 𝑜 suc n = u f f Fn suc suc n f = u f suc n = a suc n f a R f suc a
140 139 ex u ω 1 𝑜 suc n = u f f Fn suc suc n f = u f suc n = a suc n f a R f suc a
141 140 reximdv u ω 1 𝑜 n ω suc n = u n ω f f Fn suc suc n f = u f suc n = a suc n f a R f suc a
142 24 141 mpd u ω 1 𝑜 n ω f f Fn suc suc n f = u f suc n = a suc n f a R f suc a
143 brttrcl2 u t++ R n ω f f Fn suc suc n f = u f suc n = a suc n f a R f suc a
144 142 143 sylibr u ω 1 𝑜 u t++ R
145 1 relopabiv Rel R
146 1 dmeqi dom R = dom x y | x A x = suc y
147 dmopabss dom x y | x A x = suc y A
148 146 147 eqsstri dom R A
149 relssres Rel R dom R A R A = R
150 145 148 149 mp2an R A = R
151 ttrcleq R A = R t++ R A = t++ R
152 150 151 ax-mp t++ R A = t++ R
153 152 breqi u t++ R A u t++ R
154 144 153 sylibr u ω 1 𝑜 u t++ R A
155 154 rgen u ω 1 𝑜 u t++ R A
156 ssrab ω 1 𝑜 u A | u t++ R A ω 1 𝑜 A u ω 1 𝑜 u t++ R A
157 12 155 156 mpbir2an ω 1 𝑜 u A | u t++ R A
158 ssexg ω 1 𝑜 u A | u t++ R A u A | u t++ R A V ω 1 𝑜 V
159 157 158 mpan u A | u t++ R A V ω 1 𝑜 V
160 159 con3i ¬ ω 1 𝑜 V ¬ u A | u t++ R A V
161 peano1 ω
162 161 2 eleqtrri A
163 breq2 t = u t++ R A t u t++ R A
164 163 rabbidv t = u A | u t++ R A t = u A | u t++ R A
165 164 eleq1d t = u A | u t++ R A t V u A | u t++ R A V
166 165 rspcv A t A u A | u t++ R A t V u A | u t++ R A V
167 162 166 ax-mp t A u A | u t++ R A t V u A | u t++ R A V
168 167 con3i ¬ u A | u t++ R A V ¬ t A u A | u t++ R A t V
169 10 160 168 3syl Fin = V ¬ t A u A | u t++ R A t V
170 df-se t++ R A Se A t A u A | u t++ R A t V
171 169 170 sylnibr Fin = V ¬ t++ R A Se A
172 vex w V
173 vex z V
174 eleq1w x = w x A w A
175 eqeq1 x = w x = suc y w = suc y
176 174 175 anbi12d x = w x A x = suc y w A w = suc y
177 suceq y = z suc y = suc z
178 177 eqeq2d y = z w = suc y w = suc z
179 178 anbi2d y = z w A w = suc y w A w = suc z
180 172 173 176 179 1 brab w R z w A w = suc z
181 180 biimpi w R z w A w = suc z
182 181 adantl w A w R z w A w = suc z
183 simpl w A w = suc z w A
184 180 biimpri w A w = suc z w R z
185 183 184 jca w A w = suc z w A w R z
186 182 185 impbii w A w R z w A w = suc z
187 186 rabbia2 w A | w R z = w A | w = suc z
188 173 sucex suc z V
189 188 eueqi ∃! w w = suc z
190 euabex ∃! w w = suc z w | w = suc z V
191 189 190 ax-mp w | w = suc z V
192 rabssab w A | w = suc z w | w = suc z
193 191 192 ssexi w A | w = suc z V
194 187 193 eqeltri w A | w R z V
195 194 rgenw z A w A | w R z V
196 df-se R Se A z A w A | w R z V
197 195 196 mpbir R Se A
198 171 197 jctil Fin = V R Se A ¬ t++ R A Se A