| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvnttrclse.1 |
|- R = { <. x , y >. | ( x e. A /\ x = suc y ) } |
| 2 |
|
fineqvnttrclse.2 |
|- A = _om |
| 3 |
|
ominf |
|- -. _om e. Fin |
| 4 |
|
1onn |
|- 1o e. _om |
| 5 |
|
nnfi |
|- ( 1o e. _om -> 1o e. Fin ) |
| 6 |
4 5
|
ax-mp |
|- 1o e. Fin |
| 7 |
|
difinf |
|- ( ( -. _om e. Fin /\ 1o e. Fin ) -> -. ( _om \ 1o ) e. Fin ) |
| 8 |
3 6 7
|
mp2an |
|- -. ( _om \ 1o ) e. Fin |
| 9 |
|
eleq2 |
|- ( Fin = _V -> ( ( _om \ 1o ) e. Fin <-> ( _om \ 1o ) e. _V ) ) |
| 10 |
8 9
|
mtbii |
|- ( Fin = _V -> -. ( _om \ 1o ) e. _V ) |
| 11 |
|
difss |
|- ( _om \ 1o ) C_ _om |
| 12 |
11 2
|
sseqtrri |
|- ( _om \ 1o ) C_ A |
| 13 |
|
eldifi |
|- ( u e. ( _om \ 1o ) -> u e. _om ) |
| 14 |
|
eldifn |
|- ( u e. ( _om \ 1o ) -> -. u e. 1o ) |
| 15 |
|
0lt1o |
|- (/) e. 1o |
| 16 |
|
eleq1 |
|- ( u = (/) -> ( u e. 1o <-> (/) e. 1o ) ) |
| 17 |
15 16
|
mpbiri |
|- ( u = (/) -> u e. 1o ) |
| 18 |
17
|
necon3bi |
|- ( -. u e. 1o -> u =/= (/) ) |
| 19 |
14 18
|
syl |
|- ( u e. ( _om \ 1o ) -> u =/= (/) ) |
| 20 |
|
nnsuc |
|- ( ( u e. _om /\ u =/= (/) ) -> E. n e. _om u = suc n ) |
| 21 |
|
eqcom |
|- ( u = suc n <-> suc n = u ) |
| 22 |
21
|
rexbii |
|- ( E. n e. _om u = suc n <-> E. n e. _om suc n = u ) |
| 23 |
20 22
|
sylib |
|- ( ( u e. _om /\ u =/= (/) ) -> E. n e. _om suc n = u ) |
| 24 |
13 19 23
|
syl2anc |
|- ( u e. ( _om \ 1o ) -> E. n e. _om suc n = u ) |
| 25 |
|
sucexg |
|- ( n e. _V -> suc n e. _V ) |
| 26 |
25
|
elv |
|- suc n e. _V |
| 27 |
26
|
sucex |
|- suc suc n e. _V |
| 28 |
27
|
mptex |
|- ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) e. _V |
| 29 |
28
|
a1i |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) e. _V ) |
| 30 |
|
fineqvnttrclselem1 |
|- ( u e. ( _om \ 1o ) -> U. { d e. On | ( v +o d ) = u } e. _om ) |
| 31 |
30
|
elexd |
|- ( u e. ( _om \ 1o ) -> U. { d e. On | ( v +o d ) = u } e. _V ) |
| 32 |
31
|
ralrimivw |
|- ( u e. ( _om \ 1o ) -> A. v e. suc suc n U. { d e. On | ( v +o d ) = u } e. _V ) |
| 33 |
|
eqid |
|- ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) |
| 34 |
33
|
fnmpt |
|- ( A. v e. suc suc n U. { d e. On | ( v +o d ) = u } e. _V -> ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) Fn suc suc n ) |
| 35 |
32 34
|
syl |
|- ( u e. ( _om \ 1o ) -> ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) Fn suc suc n ) |
| 36 |
35
|
adantr |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) Fn suc suc n ) |
| 37 |
|
nnon |
|- ( u e. _om -> u e. On ) |
| 38 |
13 37
|
syl |
|- ( u e. ( _om \ 1o ) -> u e. On ) |
| 39 |
|
eloni |
|- ( u e. On -> Ord u ) |
| 40 |
38 39
|
syl |
|- ( u e. ( _om \ 1o ) -> Ord u ) |
| 41 |
40
|
adantr |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> Ord u ) |
| 42 |
|
ordeq |
|- ( suc n = u -> ( Ord suc n <-> Ord u ) ) |
| 43 |
42
|
adantl |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( Ord suc n <-> Ord u ) ) |
| 44 |
41 43
|
mpbird |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> Ord suc n ) |
| 45 |
|
0elsuc |
|- ( Ord suc n -> (/) e. suc suc n ) |
| 46 |
44 45
|
syl |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> (/) e. suc suc n ) |
| 47 |
|
simpl |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> u e. ( _om \ 1o ) ) |
| 48 |
|
oveq1 |
|- ( v = (/) -> ( v +o d ) = ( (/) +o d ) ) |
| 49 |
48
|
eqeq1d |
|- ( v = (/) -> ( ( v +o d ) = u <-> ( (/) +o d ) = u ) ) |
| 50 |
49
|
rabbidv |
|- ( v = (/) -> { d e. On | ( v +o d ) = u } = { d e. On | ( (/) +o d ) = u } ) |
| 51 |
50
|
unieqd |
|- ( v = (/) -> U. { d e. On | ( v +o d ) = u } = U. { d e. On | ( (/) +o d ) = u } ) |
| 52 |
|
simpl |
|- ( ( (/) e. suc suc n /\ u e. ( _om \ 1o ) ) -> (/) e. suc suc n ) |
| 53 |
|
fineqvnttrclselem1 |
|- ( u e. ( _om \ 1o ) -> U. { d e. On | ( (/) +o d ) = u } e. _om ) |
| 54 |
53
|
adantl |
|- ( ( (/) e. suc suc n /\ u e. ( _om \ 1o ) ) -> U. { d e. On | ( (/) +o d ) = u } e. _om ) |
| 55 |
33 51 52 54
|
fvmptd3 |
|- ( ( (/) e. suc suc n /\ u e. ( _om \ 1o ) ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = U. { d e. On | ( (/) +o d ) = u } ) |
| 56 |
|
oa0r |
|- ( d e. On -> ( (/) +o d ) = d ) |
| 57 |
56
|
eqeq1d |
|- ( d e. On -> ( ( (/) +o d ) = u <-> d = u ) ) |
| 58 |
57
|
rabbiia |
|- { d e. On | ( (/) +o d ) = u } = { d e. On | d = u } |
| 59 |
|
rabsn |
|- ( u e. On -> { d e. On | d = u } = { u } ) |
| 60 |
58 59
|
eqtrid |
|- ( u e. On -> { d e. On | ( (/) +o d ) = u } = { u } ) |
| 61 |
60
|
unieqd |
|- ( u e. On -> U. { d e. On | ( (/) +o d ) = u } = U. { u } ) |
| 62 |
|
unisnv |
|- U. { u } = u |
| 63 |
61 62
|
eqtrdi |
|- ( u e. On -> U. { d e. On | ( (/) +o d ) = u } = u ) |
| 64 |
38 63
|
syl |
|- ( u e. ( _om \ 1o ) -> U. { d e. On | ( (/) +o d ) = u } = u ) |
| 65 |
64
|
adantl |
|- ( ( (/) e. suc suc n /\ u e. ( _om \ 1o ) ) -> U. { d e. On | ( (/) +o d ) = u } = u ) |
| 66 |
55 65
|
eqtrd |
|- ( ( (/) e. suc suc n /\ u e. ( _om \ 1o ) ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u ) |
| 67 |
46 47 66
|
syl2anc |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u ) |
| 68 |
|
oveq1 |
|- ( v = suc n -> ( v +o d ) = ( suc n +o d ) ) |
| 69 |
68
|
eqeq1d |
|- ( v = suc n -> ( ( v +o d ) = u <-> ( suc n +o d ) = u ) ) |
| 70 |
69
|
rabbidv |
|- ( v = suc n -> { d e. On | ( v +o d ) = u } = { d e. On | ( suc n +o d ) = u } ) |
| 71 |
70
|
unieqd |
|- ( v = suc n -> U. { d e. On | ( v +o d ) = u } = U. { d e. On | ( suc n +o d ) = u } ) |
| 72 |
26
|
sucid |
|- suc n e. suc suc n |
| 73 |
72
|
a1i |
|- ( u e. ( _om \ 1o ) -> suc n e. suc suc n ) |
| 74 |
|
fineqvnttrclselem1 |
|- ( u e. ( _om \ 1o ) -> U. { d e. On | ( suc n +o d ) = u } e. _om ) |
| 75 |
33 71 73 74
|
fvmptd3 |
|- ( u e. ( _om \ 1o ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = U. { d e. On | ( suc n +o d ) = u } ) |
| 76 |
75
|
adantr |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = U. { d e. On | ( suc n +o d ) = u } ) |
| 77 |
|
oveq1 |
|- ( suc n = u -> ( suc n +o d ) = ( u +o d ) ) |
| 78 |
77
|
eqeq1d |
|- ( suc n = u -> ( ( suc n +o d ) = u <-> ( u +o d ) = u ) ) |
| 79 |
78
|
ad2antlr |
|- ( ( ( u e. On /\ suc n = u ) /\ d e. On ) -> ( ( suc n +o d ) = u <-> ( u +o d ) = u ) ) |
| 80 |
|
oa0 |
|- ( u e. On -> ( u +o (/) ) = u ) |
| 81 |
80
|
adantr |
|- ( ( u e. On /\ d e. On ) -> ( u +o (/) ) = u ) |
| 82 |
|
oveq2 |
|- ( d = (/) -> ( u +o d ) = ( u +o (/) ) ) |
| 83 |
82
|
eqeq1d |
|- ( d = (/) -> ( ( u +o d ) = u <-> ( u +o (/) ) = u ) ) |
| 84 |
81 83
|
syl5ibrcom |
|- ( ( u e. On /\ d e. On ) -> ( d = (/) -> ( u +o d ) = u ) ) |
| 85 |
|
oveq2 |
|- ( s = d -> ( u +o s ) = ( u +o d ) ) |
| 86 |
85
|
eqeq1d |
|- ( s = d -> ( ( u +o s ) = u <-> ( u +o d ) = u ) ) |
| 87 |
|
oveq2 |
|- ( s = (/) -> ( u +o s ) = ( u +o (/) ) ) |
| 88 |
87
|
eqeq1d |
|- ( s = (/) -> ( ( u +o s ) = u <-> ( u +o (/) ) = u ) ) |
| 89 |
|
ssid |
|- u C_ u |
| 90 |
|
oawordeu |
|- ( ( ( u e. On /\ u e. On ) /\ u C_ u ) -> E! s e. On ( u +o s ) = u ) |
| 91 |
89 90
|
mpan2 |
|- ( ( u e. On /\ u e. On ) -> E! s e. On ( u +o s ) = u ) |
| 92 |
91
|
anidms |
|- ( u e. On -> E! s e. On ( u +o s ) = u ) |
| 93 |
92
|
3ad2ant1 |
|- ( ( u e. On /\ d e. On /\ ( u +o d ) = u ) -> E! s e. On ( u +o s ) = u ) |
| 94 |
|
simp2 |
|- ( ( u e. On /\ d e. On /\ ( u +o d ) = u ) -> d e. On ) |
| 95 |
|
0elon |
|- (/) e. On |
| 96 |
95
|
a1i |
|- ( ( u e. On /\ d e. On /\ ( u +o d ) = u ) -> (/) e. On ) |
| 97 |
|
simp3 |
|- ( ( u e. On /\ d e. On /\ ( u +o d ) = u ) -> ( u +o d ) = u ) |
| 98 |
80
|
3ad2ant1 |
|- ( ( u e. On /\ d e. On /\ ( u +o d ) = u ) -> ( u +o (/) ) = u ) |
| 99 |
86 88 93 94 96 97 98
|
reu2eqd |
|- ( ( u e. On /\ d e. On /\ ( u +o d ) = u ) -> d = (/) ) |
| 100 |
99
|
3expia |
|- ( ( u e. On /\ d e. On ) -> ( ( u +o d ) = u -> d = (/) ) ) |
| 101 |
84 100
|
impbid |
|- ( ( u e. On /\ d e. On ) -> ( d = (/) <-> ( u +o d ) = u ) ) |
| 102 |
101
|
adantlr |
|- ( ( ( u e. On /\ suc n = u ) /\ d e. On ) -> ( d = (/) <-> ( u +o d ) = u ) ) |
| 103 |
79 102
|
bitr4d |
|- ( ( ( u e. On /\ suc n = u ) /\ d e. On ) -> ( ( suc n +o d ) = u <-> d = (/) ) ) |
| 104 |
103
|
rabbidva |
|- ( ( u e. On /\ suc n = u ) -> { d e. On | ( suc n +o d ) = u } = { d e. On | d = (/) } ) |
| 105 |
104
|
unieqd |
|- ( ( u e. On /\ suc n = u ) -> U. { d e. On | ( suc n +o d ) = u } = U. { d e. On | d = (/) } ) |
| 106 |
|
rabsn |
|- ( (/) e. On -> { d e. On | d = (/) } = { (/) } ) |
| 107 |
95 106
|
ax-mp |
|- { d e. On | d = (/) } = { (/) } |
| 108 |
107
|
unieqi |
|- U. { d e. On | d = (/) } = U. { (/) } |
| 109 |
|
0ex |
|- (/) e. _V |
| 110 |
109
|
unisn |
|- U. { (/) } = (/) |
| 111 |
108 110
|
eqtri |
|- U. { d e. On | d = (/) } = (/) |
| 112 |
105 111
|
eqtrdi |
|- ( ( u e. On /\ suc n = u ) -> U. { d e. On | ( suc n +o d ) = u } = (/) ) |
| 113 |
38 112
|
sylan |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> U. { d e. On | ( suc n +o d ) = u } = (/) ) |
| 114 |
76 113
|
eqtrd |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = (/) ) |
| 115 |
67 114
|
jca |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u /\ ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = (/) ) ) |
| 116 |
|
vex |
|- n e. _V |
| 117 |
116
|
sucid |
|- n e. suc n |
| 118 |
|
eleq2 |
|- ( suc n = u -> ( n e. suc n <-> n e. u ) ) |
| 119 |
117 118
|
mpbii |
|- ( suc n = u -> n e. u ) |
| 120 |
|
oveq2 |
|- ( d = e -> ( v +o d ) = ( v +o e ) ) |
| 121 |
120
|
eqeq1d |
|- ( d = e -> ( ( v +o d ) = u <-> ( v +o e ) = u ) ) |
| 122 |
121
|
cbvrabv |
|- { d e. On | ( v +o d ) = u } = { e e. On | ( v +o e ) = u } |
| 123 |
122
|
unieqi |
|- U. { d e. On | ( v +o d ) = u } = U. { e e. On | ( v +o e ) = u } |
| 124 |
123
|
mpteq2i |
|- ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) = ( v e. suc suc n |-> U. { e e. On | ( v +o e ) = u } ) |
| 125 |
1 2 124
|
fineqvnttrclselem3 |
|- ( ( u e. ( _om \ 1o ) /\ n e. u ) -> A. a e. suc n ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) R ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) |
| 126 |
119 125
|
sylan2 |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> A. a e. suc n ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) R ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) |
| 127 |
36 115 126
|
3jca |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) Fn suc suc n /\ ( ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u /\ ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = (/) ) /\ A. a e. suc n ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) R ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) ) |
| 128 |
|
fneq1 |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( f Fn suc suc n <-> ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) Fn suc suc n ) ) |
| 129 |
|
fveq1 |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( f ` (/) ) = ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) ) |
| 130 |
129
|
eqeq1d |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( ( f ` (/) ) = u <-> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u ) ) |
| 131 |
|
fveq1 |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( f ` suc n ) = ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) ) |
| 132 |
131
|
eqeq1d |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( ( f ` suc n ) = (/) <-> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = (/) ) ) |
| 133 |
130 132
|
anbi12d |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) <-> ( ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u /\ ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = (/) ) ) ) |
| 134 |
|
fveq1 |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( f ` a ) = ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) ) |
| 135 |
|
fveq1 |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( f ` suc a ) = ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) |
| 136 |
134 135
|
breq12d |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( ( f ` a ) R ( f ` suc a ) <-> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) R ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) ) |
| 137 |
136
|
ralbidv |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( A. a e. suc n ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) R ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) ) |
| 138 |
128 133 137
|
3anbi123d |
|- ( f = ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) -> ( ( f Fn suc suc n /\ ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) Fn suc suc n /\ ( ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` (/) ) = u /\ ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc n ) = (/) ) /\ A. a e. suc n ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` a ) R ( ( v e. suc suc n |-> U. { d e. On | ( v +o d ) = u } ) ` suc a ) ) ) ) |
| 139 |
29 127 138
|
spcedv |
|- ( ( u e. ( _om \ 1o ) /\ suc n = u ) -> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 140 |
139
|
ex |
|- ( u e. ( _om \ 1o ) -> ( suc n = u -> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 141 |
140
|
reximdv |
|- ( u e. ( _om \ 1o ) -> ( E. n e. _om suc n = u -> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 142 |
24 141
|
mpd |
|- ( u e. ( _om \ 1o ) -> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 143 |
|
brttrcl2 |
|- ( u t++ R (/) <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = u /\ ( f ` suc n ) = (/) ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 144 |
142 143
|
sylibr |
|- ( u e. ( _om \ 1o ) -> u t++ R (/) ) |
| 145 |
1
|
relopabiv |
|- Rel R |
| 146 |
1
|
dmeqi |
|- dom R = dom { <. x , y >. | ( x e. A /\ x = suc y ) } |
| 147 |
|
dmopabss |
|- dom { <. x , y >. | ( x e. A /\ x = suc y ) } C_ A |
| 148 |
146 147
|
eqsstri |
|- dom R C_ A |
| 149 |
|
relssres |
|- ( ( Rel R /\ dom R C_ A ) -> ( R |` A ) = R ) |
| 150 |
145 148 149
|
mp2an |
|- ( R |` A ) = R |
| 151 |
|
ttrcleq |
|- ( ( R |` A ) = R -> t++ ( R |` A ) = t++ R ) |
| 152 |
150 151
|
ax-mp |
|- t++ ( R |` A ) = t++ R |
| 153 |
152
|
breqi |
|- ( u t++ ( R |` A ) (/) <-> u t++ R (/) ) |
| 154 |
144 153
|
sylibr |
|- ( u e. ( _om \ 1o ) -> u t++ ( R |` A ) (/) ) |
| 155 |
154
|
rgen |
|- A. u e. ( _om \ 1o ) u t++ ( R |` A ) (/) |
| 156 |
|
ssrab |
|- ( ( _om \ 1o ) C_ { u e. A | u t++ ( R |` A ) (/) } <-> ( ( _om \ 1o ) C_ A /\ A. u e. ( _om \ 1o ) u t++ ( R |` A ) (/) ) ) |
| 157 |
12 155 156
|
mpbir2an |
|- ( _om \ 1o ) C_ { u e. A | u t++ ( R |` A ) (/) } |
| 158 |
|
ssexg |
|- ( ( ( _om \ 1o ) C_ { u e. A | u t++ ( R |` A ) (/) } /\ { u e. A | u t++ ( R |` A ) (/) } e. _V ) -> ( _om \ 1o ) e. _V ) |
| 159 |
157 158
|
mpan |
|- ( { u e. A | u t++ ( R |` A ) (/) } e. _V -> ( _om \ 1o ) e. _V ) |
| 160 |
159
|
con3i |
|- ( -. ( _om \ 1o ) e. _V -> -. { u e. A | u t++ ( R |` A ) (/) } e. _V ) |
| 161 |
|
peano1 |
|- (/) e. _om |
| 162 |
161 2
|
eleqtrri |
|- (/) e. A |
| 163 |
|
breq2 |
|- ( t = (/) -> ( u t++ ( R |` A ) t <-> u t++ ( R |` A ) (/) ) ) |
| 164 |
163
|
rabbidv |
|- ( t = (/) -> { u e. A | u t++ ( R |` A ) t } = { u e. A | u t++ ( R |` A ) (/) } ) |
| 165 |
164
|
eleq1d |
|- ( t = (/) -> ( { u e. A | u t++ ( R |` A ) t } e. _V <-> { u e. A | u t++ ( R |` A ) (/) } e. _V ) ) |
| 166 |
165
|
rspcv |
|- ( (/) e. A -> ( A. t e. A { u e. A | u t++ ( R |` A ) t } e. _V -> { u e. A | u t++ ( R |` A ) (/) } e. _V ) ) |
| 167 |
162 166
|
ax-mp |
|- ( A. t e. A { u e. A | u t++ ( R |` A ) t } e. _V -> { u e. A | u t++ ( R |` A ) (/) } e. _V ) |
| 168 |
167
|
con3i |
|- ( -. { u e. A | u t++ ( R |` A ) (/) } e. _V -> -. A. t e. A { u e. A | u t++ ( R |` A ) t } e. _V ) |
| 169 |
10 160 168
|
3syl |
|- ( Fin = _V -> -. A. t e. A { u e. A | u t++ ( R |` A ) t } e. _V ) |
| 170 |
|
df-se |
|- ( t++ ( R |` A ) Se A <-> A. t e. A { u e. A | u t++ ( R |` A ) t } e. _V ) |
| 171 |
169 170
|
sylnibr |
|- ( Fin = _V -> -. t++ ( R |` A ) Se A ) |
| 172 |
|
vex |
|- w e. _V |
| 173 |
|
vex |
|- z e. _V |
| 174 |
|
eleq1w |
|- ( x = w -> ( x e. A <-> w e. A ) ) |
| 175 |
|
eqeq1 |
|- ( x = w -> ( x = suc y <-> w = suc y ) ) |
| 176 |
174 175
|
anbi12d |
|- ( x = w -> ( ( x e. A /\ x = suc y ) <-> ( w e. A /\ w = suc y ) ) ) |
| 177 |
|
suceq |
|- ( y = z -> suc y = suc z ) |
| 178 |
177
|
eqeq2d |
|- ( y = z -> ( w = suc y <-> w = suc z ) ) |
| 179 |
178
|
anbi2d |
|- ( y = z -> ( ( w e. A /\ w = suc y ) <-> ( w e. A /\ w = suc z ) ) ) |
| 180 |
172 173 176 179 1
|
brab |
|- ( w R z <-> ( w e. A /\ w = suc z ) ) |
| 181 |
180
|
biimpi |
|- ( w R z -> ( w e. A /\ w = suc z ) ) |
| 182 |
181
|
adantl |
|- ( ( w e. A /\ w R z ) -> ( w e. A /\ w = suc z ) ) |
| 183 |
|
simpl |
|- ( ( w e. A /\ w = suc z ) -> w e. A ) |
| 184 |
180
|
biimpri |
|- ( ( w e. A /\ w = suc z ) -> w R z ) |
| 185 |
183 184
|
jca |
|- ( ( w e. A /\ w = suc z ) -> ( w e. A /\ w R z ) ) |
| 186 |
182 185
|
impbii |
|- ( ( w e. A /\ w R z ) <-> ( w e. A /\ w = suc z ) ) |
| 187 |
186
|
rabbia2 |
|- { w e. A | w R z } = { w e. A | w = suc z } |
| 188 |
173
|
sucex |
|- suc z e. _V |
| 189 |
188
|
eueqi |
|- E! w w = suc z |
| 190 |
|
euabex |
|- ( E! w w = suc z -> { w | w = suc z } e. _V ) |
| 191 |
189 190
|
ax-mp |
|- { w | w = suc z } e. _V |
| 192 |
|
rabssab |
|- { w e. A | w = suc z } C_ { w | w = suc z } |
| 193 |
191 192
|
ssexi |
|- { w e. A | w = suc z } e. _V |
| 194 |
187 193
|
eqeltri |
|- { w e. A | w R z } e. _V |
| 195 |
194
|
rgenw |
|- A. z e. A { w e. A | w R z } e. _V |
| 196 |
|
df-se |
|- ( R Se A <-> A. z e. A { w e. A | w R z } e. _V ) |
| 197 |
195 196
|
mpbir |
|- R Se A |
| 198 |
171 197
|
jctil |
|- ( Fin = _V -> ( R Se A /\ -. t++ ( R |` A ) Se A ) ) |