| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscringd.1 |
⊢ ( 𝜑 → 𝐺 ∈ AbelOp ) |
| 2 |
|
iscringd.2 |
⊢ ( 𝜑 → 𝑋 = ran 𝐺 ) |
| 3 |
|
iscringd.3 |
⊢ ( 𝜑 → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 4 |
|
iscringd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) |
| 5 |
|
iscringd.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
| 6 |
|
iscringd.6 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑋 ) |
| 7 |
|
iscringd.7 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝐻 𝑈 ) = 𝑦 ) |
| 8 |
|
iscringd.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 9 |
|
id |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
| 10 |
9
|
3com13 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
| 11 |
|
eleq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋 ) ) |
| 12 |
11
|
3anbi1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 13 |
12
|
anbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 𝐻 𝑤 ) = ( 𝑥 𝐻 𝑧 ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 𝐻 𝑤 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 17 |
15 16
|
oveq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 18 |
14 17
|
eqeq12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 19 |
13 18
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 20 |
|
eleq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋 ) ) |
| 21 |
20
|
3anbi3d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ↔ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 22 |
21
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐺 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐻 𝑤 ) = ( 𝑥 𝐻 𝑤 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 27 |
24 26
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) |
| 28 |
22 27
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) ) |
| 29 |
|
eleq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋 ) ) |
| 30 |
29
|
3anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ↔ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) |
| 31 |
30
|
anbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑤 ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑤 ) ) |
| 35 |
33 34
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 36 |
32 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) |
| 37 |
31 36
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) ) |
| 38 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ AbelOp ) |
| 39 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑋 = ran 𝐺 ) |
| 41 |
39 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ ran 𝐺 ) |
| 42 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 43 |
42 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ ran 𝐺 ) |
| 44 |
|
eqid |
⊢ ran 𝐺 = ran 𝐺 |
| 45 |
44
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝑧 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑧 ) ) |
| 46 |
38 41 43 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑧 ) ) |
| 47 |
46
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 48 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 49 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
| 50 |
38 49
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) |
| 51 |
44
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ ran 𝐺 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐺 𝑧 ) ∈ ran 𝐺 ) |
| 52 |
50 43 41 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐺 𝑧 ) ∈ ran 𝐺 ) |
| 53 |
52 40
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) |
| 54 |
48 53
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) |
| 55 |
|
ovex |
⊢ ( 𝑦 𝐺 𝑧 ) ∈ V |
| 56 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑤 ∈ 𝑋 ↔ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) |
| 57 |
56
|
anbi2d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) ) |
| 58 |
57
|
anbi2d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
| 60 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑤 𝐻 𝑥 ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 61 |
59 60
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) ) |
| 62 |
58 61
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) ) ) |
| 63 |
|
eleq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋 ) ) |
| 64 |
63
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) |
| 65 |
64
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) ) |
| 66 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑤 ) ) |
| 67 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐻 𝑥 ) = ( 𝑤 𝐻 𝑥 ) ) |
| 68 |
66 67
|
eqeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ) |
| 69 |
65 68
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ) ) |
| 70 |
69 8
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) |
| 71 |
55 62 70
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 72 |
54 71
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 73 |
8
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 74 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋 ) ) |
| 75 |
74
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) |
| 76 |
75
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) ) |
| 77 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑧 ) ) |
| 78 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑥 ) ) |
| 79 |
77 78
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) ) |
| 80 |
76 79
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) ) ) |
| 81 |
80 8
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) |
| 82 |
81
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) |
| 83 |
73 82
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) = ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) ) |
| 84 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 85 |
84 42 48
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑥 ) ∈ 𝑋 ) |
| 86 |
85 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑥 ) ∈ ran 𝐺 ) |
| 87 |
84 39 48
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐻 𝑥 ) ∈ 𝑋 ) |
| 88 |
87 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐻 𝑥 ) ∈ ran 𝐺 ) |
| 89 |
44
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝑦 𝐻 𝑥 ) ∈ ran 𝐺 ∧ ( 𝑧 𝐻 𝑥 ) ∈ ran 𝐺 ) → ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 90 |
38 86 88 89
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 91 |
5 83 90
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 92 |
47 72 91
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 93 |
37 92
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 94 |
28 93
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 95 |
19 94
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 96 |
10 95
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 97 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ∈ 𝑋 ) |
| 98 |
|
oveq1 |
⊢ ( 𝑥 = 𝑈 → ( 𝑥 𝐻 𝑦 ) = ( 𝑈 𝐻 𝑦 ) ) |
| 99 |
|
oveq2 |
⊢ ( 𝑥 = 𝑈 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑈 ) ) |
| 100 |
98 99
|
eqeq12d |
⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) |
| 101 |
100
|
imbi2d |
⊢ ( 𝑥 = 𝑈 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) ) |
| 102 |
8
|
an12s |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 103 |
102
|
ex |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
| 104 |
101 103
|
vtoclga |
⊢ ( 𝑈 ∈ 𝑋 → ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) |
| 105 |
97 104
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) |
| 106 |
105 7
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = 𝑦 ) |
| 107 |
1 2 3 4 5 96 6 106 7
|
isrngod |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ RingOps ) |
| 108 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ran 𝐺 ) ) |
| 109 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ran 𝐺 ) ) |
| 110 |
108 109
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) ) |
| 111 |
110
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 112 |
111 8
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 113 |
112
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 114 |
|
rnexg |
⊢ ( 𝐺 ∈ AbelOp → ran 𝐺 ∈ V ) |
| 115 |
1 114
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ V ) |
| 116 |
2 115
|
eqeltrd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 117 |
116 116
|
xpexd |
⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) ∈ V ) |
| 118 |
3 117
|
fexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 119 |
|
iscom2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 ∈ V ) → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
| 120 |
1 118 119
|
syl2anc |
⊢ ( 𝜑 → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
| 121 |
113 120
|
mpbird |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ Com2 ) |
| 122 |
|
iscrngo |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ CRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ 〈 𝐺 , 𝐻 〉 ∈ Com2 ) ) |
| 123 |
107 121 122
|
sylanbrc |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ CRingOps ) |