| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscringd.1 |
|- ( ph -> G e. AbelOp ) |
| 2 |
|
iscringd.2 |
|- ( ph -> X = ran G ) |
| 3 |
|
iscringd.3 |
|- ( ph -> H : ( X X. X ) --> X ) |
| 4 |
|
iscringd.4 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) ) |
| 5 |
|
iscringd.5 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) ) |
| 6 |
|
iscringd.6 |
|- ( ph -> U e. X ) |
| 7 |
|
iscringd.7 |
|- ( ( ph /\ y e. X ) -> ( y H U ) = y ) |
| 8 |
|
iscringd.8 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
| 9 |
|
id |
|- ( ( z e. X /\ y e. X /\ x e. X ) -> ( z e. X /\ y e. X /\ x e. X ) ) |
| 10 |
9
|
3com13 |
|- ( ( x e. X /\ y e. X /\ z e. X ) -> ( z e. X /\ y e. X /\ x e. X ) ) |
| 11 |
|
eleq1 |
|- ( w = z -> ( w e. X <-> z e. X ) ) |
| 12 |
11
|
3anbi1d |
|- ( w = z -> ( ( w e. X /\ y e. X /\ x e. X ) <-> ( z e. X /\ y e. X /\ x e. X ) ) ) |
| 13 |
12
|
anbi2d |
|- ( w = z -> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) <-> ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) ) ) |
| 14 |
|
oveq2 |
|- ( w = z -> ( ( x G y ) H w ) = ( ( x G y ) H z ) ) |
| 15 |
|
oveq2 |
|- ( w = z -> ( x H w ) = ( x H z ) ) |
| 16 |
|
oveq2 |
|- ( w = z -> ( y H w ) = ( y H z ) ) |
| 17 |
15 16
|
oveq12d |
|- ( w = z -> ( ( x H w ) G ( y H w ) ) = ( ( x H z ) G ( y H z ) ) ) |
| 18 |
14 17
|
eqeq12d |
|- ( w = z -> ( ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) <-> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) |
| 19 |
13 18
|
imbi12d |
|- ( w = z -> ( ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) ) |
| 20 |
|
eleq1 |
|- ( z = x -> ( z e. X <-> x e. X ) ) |
| 21 |
20
|
3anbi3d |
|- ( z = x -> ( ( w e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ x e. X ) ) ) |
| 22 |
21
|
anbi2d |
|- ( z = x -> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) ) ) |
| 23 |
|
oveq1 |
|- ( z = x -> ( z G y ) = ( x G y ) ) |
| 24 |
23
|
oveq1d |
|- ( z = x -> ( ( z G y ) H w ) = ( ( x G y ) H w ) ) |
| 25 |
|
oveq1 |
|- ( z = x -> ( z H w ) = ( x H w ) ) |
| 26 |
25
|
oveq1d |
|- ( z = x -> ( ( z H w ) G ( y H w ) ) = ( ( x H w ) G ( y H w ) ) ) |
| 27 |
24 26
|
eqeq12d |
|- ( z = x -> ( ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) <-> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) |
| 28 |
22 27
|
imbi12d |
|- ( z = x -> ( ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) ) |
| 29 |
|
eleq1 |
|- ( x = w -> ( x e. X <-> w e. X ) ) |
| 30 |
29
|
3anbi1d |
|- ( x = w -> ( ( x e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ z e. X ) ) ) |
| 31 |
30
|
anbi2d |
|- ( x = w -> ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) ) ) |
| 32 |
|
oveq2 |
|- ( x = w -> ( ( z G y ) H x ) = ( ( z G y ) H w ) ) |
| 33 |
|
oveq2 |
|- ( x = w -> ( z H x ) = ( z H w ) ) |
| 34 |
|
oveq2 |
|- ( x = w -> ( y H x ) = ( y H w ) ) |
| 35 |
33 34
|
oveq12d |
|- ( x = w -> ( ( z H x ) G ( y H x ) ) = ( ( z H w ) G ( y H w ) ) ) |
| 36 |
32 35
|
eqeq12d |
|- ( x = w -> ( ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) <-> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) |
| 37 |
31 36
|
imbi12d |
|- ( x = w -> ( ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) ) |
| 38 |
1
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. AbelOp ) |
| 39 |
|
simpr3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. X ) |
| 40 |
2
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> X = ran G ) |
| 41 |
39 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. ran G ) |
| 42 |
|
simpr2 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. X ) |
| 43 |
42 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. ran G ) |
| 44 |
|
eqid |
|- ran G = ran G |
| 45 |
44
|
ablocom |
|- ( ( G e. AbelOp /\ z e. ran G /\ y e. ran G ) -> ( z G y ) = ( y G z ) ) |
| 46 |
38 41 43 45
|
syl3anc |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z G y ) = ( y G z ) ) |
| 47 |
46
|
oveq1d |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( y G z ) H x ) ) |
| 48 |
|
simpr1 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> x e. X ) |
| 49 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
| 50 |
38 49
|
syl |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. GrpOp ) |
| 51 |
44
|
grpocl |
|- ( ( G e. GrpOp /\ y e. ran G /\ z e. ran G ) -> ( y G z ) e. ran G ) |
| 52 |
50 43 41 51
|
syl3anc |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. ran G ) |
| 53 |
52 40
|
eleqtrrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. X ) |
| 54 |
48 53
|
jca |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x e. X /\ ( y G z ) e. X ) ) |
| 55 |
|
ovex |
|- ( y G z ) e. _V |
| 56 |
|
eleq1 |
|- ( w = ( y G z ) -> ( w e. X <-> ( y G z ) e. X ) ) |
| 57 |
56
|
anbi2d |
|- ( w = ( y G z ) -> ( ( x e. X /\ w e. X ) <-> ( x e. X /\ ( y G z ) e. X ) ) ) |
| 58 |
57
|
anbi2d |
|- ( w = ( y G z ) -> ( ( ph /\ ( x e. X /\ w e. X ) ) <-> ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) ) ) |
| 59 |
|
oveq2 |
|- ( w = ( y G z ) -> ( x H w ) = ( x H ( y G z ) ) ) |
| 60 |
|
oveq1 |
|- ( w = ( y G z ) -> ( w H x ) = ( ( y G z ) H x ) ) |
| 61 |
59 60
|
eqeq12d |
|- ( w = ( y G z ) -> ( ( x H w ) = ( w H x ) <-> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) |
| 62 |
58 61
|
imbi12d |
|- ( w = ( y G z ) -> ( ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) <-> ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) ) |
| 63 |
|
eleq1 |
|- ( y = w -> ( y e. X <-> w e. X ) ) |
| 64 |
63
|
anbi2d |
|- ( y = w -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ w e. X ) ) ) |
| 65 |
64
|
anbi2d |
|- ( y = w -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ w e. X ) ) ) ) |
| 66 |
|
oveq2 |
|- ( y = w -> ( x H y ) = ( x H w ) ) |
| 67 |
|
oveq1 |
|- ( y = w -> ( y H x ) = ( w H x ) ) |
| 68 |
66 67
|
eqeq12d |
|- ( y = w -> ( ( x H y ) = ( y H x ) <-> ( x H w ) = ( w H x ) ) ) |
| 69 |
65 68
|
imbi12d |
|- ( y = w -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) ) ) |
| 70 |
69 8
|
chvarvv |
|- ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) |
| 71 |
55 62 70
|
vtocl |
|- ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) |
| 72 |
54 71
|
syldan |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) |
| 73 |
8
|
3adantr3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H y ) = ( y H x ) ) |
| 74 |
|
eleq1 |
|- ( y = z -> ( y e. X <-> z e. X ) ) |
| 75 |
74
|
anbi2d |
|- ( y = z -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ z e. X ) ) ) |
| 76 |
75
|
anbi2d |
|- ( y = z -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ z e. X ) ) ) ) |
| 77 |
|
oveq2 |
|- ( y = z -> ( x H y ) = ( x H z ) ) |
| 78 |
|
oveq1 |
|- ( y = z -> ( y H x ) = ( z H x ) ) |
| 79 |
77 78
|
eqeq12d |
|- ( y = z -> ( ( x H y ) = ( y H x ) <-> ( x H z ) = ( z H x ) ) ) |
| 80 |
76 79
|
imbi12d |
|- ( y = z -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) ) ) |
| 81 |
80 8
|
chvarvv |
|- ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) |
| 82 |
81
|
3adantr2 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) |
| 83 |
73 82
|
oveq12d |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) G ( x H z ) ) = ( ( y H x ) G ( z H x ) ) ) |
| 84 |
3
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> H : ( X X. X ) --> X ) |
| 85 |
84 42 48
|
fovcdmd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. X ) |
| 86 |
85 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. ran G ) |
| 87 |
84 39 48
|
fovcdmd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. X ) |
| 88 |
87 40
|
eleqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. ran G ) |
| 89 |
44
|
ablocom |
|- ( ( G e. AbelOp /\ ( y H x ) e. ran G /\ ( z H x ) e. ran G ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) ) |
| 90 |
38 86 88 89
|
syl3anc |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) ) |
| 91 |
5 83 90
|
3eqtrd |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( z H x ) G ( y H x ) ) ) |
| 92 |
47 72 91
|
3eqtr2d |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) |
| 93 |
37 92
|
chvarvv |
|- ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) |
| 94 |
28 93
|
chvarvv |
|- ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) |
| 95 |
19 94
|
chvarvv |
|- ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
| 96 |
10 95
|
sylan2 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
| 97 |
6
|
adantr |
|- ( ( ph /\ y e. X ) -> U e. X ) |
| 98 |
|
oveq1 |
|- ( x = U -> ( x H y ) = ( U H y ) ) |
| 99 |
|
oveq2 |
|- ( x = U -> ( y H x ) = ( y H U ) ) |
| 100 |
98 99
|
eqeq12d |
|- ( x = U -> ( ( x H y ) = ( y H x ) <-> ( U H y ) = ( y H U ) ) ) |
| 101 |
100
|
imbi2d |
|- ( x = U -> ( ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) ) |
| 102 |
8
|
an12s |
|- ( ( x e. X /\ ( ph /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
| 103 |
102
|
ex |
|- ( x e. X -> ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) ) |
| 104 |
101 103
|
vtoclga |
|- ( U e. X -> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) |
| 105 |
97 104
|
mpcom |
|- ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) |
| 106 |
105 7
|
eqtrd |
|- ( ( ph /\ y e. X ) -> ( U H y ) = y ) |
| 107 |
1 2 3 4 5 96 6 106 7
|
isrngod |
|- ( ph -> <. G , H >. e. RingOps ) |
| 108 |
2
|
eleq2d |
|- ( ph -> ( x e. X <-> x e. ran G ) ) |
| 109 |
2
|
eleq2d |
|- ( ph -> ( y e. X <-> y e. ran G ) ) |
| 110 |
108 109
|
anbi12d |
|- ( ph -> ( ( x e. X /\ y e. X ) <-> ( x e. ran G /\ y e. ran G ) ) ) |
| 111 |
110
|
biimpar |
|- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x e. X /\ y e. X ) ) |
| 112 |
111 8
|
syldan |
|- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x H y ) = ( y H x ) ) |
| 113 |
112
|
ralrimivva |
|- ( ph -> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) |
| 114 |
|
rnexg |
|- ( G e. AbelOp -> ran G e. _V ) |
| 115 |
1 114
|
syl |
|- ( ph -> ran G e. _V ) |
| 116 |
2 115
|
eqeltrd |
|- ( ph -> X e. _V ) |
| 117 |
116 116
|
xpexd |
|- ( ph -> ( X X. X ) e. _V ) |
| 118 |
3 117
|
fexd |
|- ( ph -> H e. _V ) |
| 119 |
|
iscom2 |
|- ( ( G e. AbelOp /\ H e. _V ) -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) ) |
| 120 |
1 118 119
|
syl2anc |
|- ( ph -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) ) |
| 121 |
113 120
|
mpbird |
|- ( ph -> <. G , H >. e. Com2 ) |
| 122 |
|
iscrngo |
|- ( <. G , H >. e. CRingOps <-> ( <. G , H >. e. RingOps /\ <. G , H >. e. Com2 ) ) |
| 123 |
107 121 122
|
sylanbrc |
|- ( ph -> <. G , H >. e. CRingOps ) |