| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lactghmga.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
lactghmga.h |
⊢ 𝐻 = ( SymGrp ‘ 𝑌 ) |
| 3 |
|
lactghmga.f |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 4 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
| 5 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
| 6 |
|
grpn0 |
⊢ ( 𝐻 ∈ Grp → 𝐻 ≠ ∅ ) |
| 7 |
|
fvprc |
⊢ ( ¬ 𝑌 ∈ V → ( SymGrp ‘ 𝑌 ) = ∅ ) |
| 8 |
2 7
|
eqtrid |
⊢ ( ¬ 𝑌 ∈ V → 𝐻 = ∅ ) |
| 9 |
8
|
necon1ai |
⊢ ( 𝐻 ≠ ∅ → 𝑌 ∈ V ) |
| 10 |
5 6 9
|
3syl |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝑌 ∈ V ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 12 |
1 11
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 13 |
12
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) |
| 14 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ V ) |
| 15 |
2 11
|
elsymgbas |
⊢ ( 𝑌 ∈ V → ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 17 |
13 16
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 18 |
|
f1of |
⊢ ( ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 → ( 𝐹 ‘ 𝑥 ) : 𝑌 ⟶ 𝑌 ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑌 ⟶ 𝑌 ) |
| 20 |
19
|
ffvelcdmda |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ) |
| 21 |
20
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ) |
| 23 |
3
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ↔ ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 24 |
22 23
|
sylib |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 26 |
1 25
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 27 |
4 26
|
syl |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 29 |
28
|
fveq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑦 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ) |
| 31 |
|
fvex |
⊢ ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ∈ V |
| 32 |
29 30 3 31
|
ovmpo |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ) |
| 33 |
27 32
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ) |
| 34 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 35 |
25 34
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 37 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑌 ∈ V ) |
| 38 |
2
|
symgid |
⊢ ( 𝑌 ∈ V → ( I ↾ 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( I ↾ 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 40 |
36 39
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( I ↾ 𝑌 ) ) |
| 41 |
40
|
fveq1d |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) = ( ( I ↾ 𝑌 ) ‘ 𝑧 ) ) |
| 42 |
|
fvresi |
⊢ ( 𝑧 ∈ 𝑌 → ( ( I ↾ 𝑌 ) ‘ 𝑧 ) = 𝑧 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( I ↾ 𝑌 ) ‘ 𝑧 ) = 𝑧 ) |
| 44 |
33 41 43
|
3eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ) |
| 45 |
12
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 46 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑣 ∈ 𝑋 ) |
| 47 |
45 46
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ) |
| 48 |
10
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑌 ∈ V ) |
| 49 |
2 11
|
elsymgbas |
⊢ ( 𝑌 ∈ V → ( ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 51 |
47 50
|
mpbid |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 52 |
|
f1of |
⊢ ( ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 → ( 𝐹 ‘ 𝑣 ) : 𝑌 ⟶ 𝑌 ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑣 ) : 𝑌 ⟶ 𝑌 ) |
| 54 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑌 ) |
| 55 |
|
fvco3 |
⊢ ( ( ( 𝐹 ‘ 𝑣 ) : 𝑌 ⟶ 𝑌 ∧ 𝑧 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 56 |
53 54 55
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 57 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 58 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑢 ∈ 𝑋 ) |
| 59 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 60 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 61 |
1 59 60
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 62 |
57 58 46 61
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 63 |
45 58
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝐻 ) ) |
| 64 |
2 11 60
|
symgov |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 65 |
63 47 64
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 66 |
62 65
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 67 |
66
|
fveq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) = ( ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑧 ) ) |
| 68 |
53 54
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ∈ 𝑌 ) |
| 69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 70 |
69
|
fveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ 𝑦 ) ) |
| 71 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑢 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 72 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ∈ V |
| 73 |
70 71 3 72
|
ovmpo |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ∈ 𝑌 ) → ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 74 |
58 68 73
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 75 |
56 67 74
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) = ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 76 |
4
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 77 |
1 59
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ) |
| 78 |
76 58 46 77
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ) |
| 79 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ) |
| 80 |
79
|
fveq1d |
⊢ ( 𝑥 = ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑦 ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ) |
| 82 |
|
fvex |
⊢ ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ∈ V |
| 83 |
80 81 3 82
|
ovmpo |
⊢ ( ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ) |
| 84 |
78 54 83
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 86 |
85
|
fveq1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑦 ) ) |
| 87 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) |
| 88 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ∈ V |
| 89 |
86 87 3 88
|
ovmpo |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( 𝑣 ⊕ 𝑧 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) |
| 90 |
46 54 89
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑣 ⊕ 𝑧 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) |
| 91 |
90
|
oveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) = ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 92 |
75 84 91
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 93 |
92
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 94 |
44 93
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) |
| 95 |
94
|
ralrimiva |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ∀ 𝑧 ∈ 𝑌 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) |
| 96 |
24 95
|
jca |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝑌 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) ) |
| 97 |
1 59 25
|
isga |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) ∧ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝑌 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) ) ) |
| 98 |
4 10 96 97
|
syl21anbrc |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |