| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamucl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
mamucl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
mamudi.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) |
| 4 |
|
mamudi.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
| 5 |
|
mamudi.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 6 |
|
mamudi.o |
⊢ ( 𝜑 → 𝑂 ∈ Fin ) |
| 7 |
|
mamuvs1.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
mamuvs1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
mamuvs1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 10 |
|
mamuvs1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
| 14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 16 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 17 |
9 16
|
syl |
⊢ ( 𝜑 → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 19 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 21 |
18 19 20
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ) |
| 22 |
|
elmapi |
⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 23 |
10 22
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 25 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) |
| 26 |
24 20 25
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 27 |
1 7 15 21 26
|
ringcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 28 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) |
| 29 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) |
| 30 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 31 |
28 13 29 30
|
fsuppmptdm |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 32 |
1 11 7 12 13 14 27 31
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 33 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) |
| 34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) |
| 35 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
| 36 |
34 35
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
| 37 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
| 38 |
4 5 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ Fin ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
| 40 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐵 ) |
| 41 |
|
ffn |
⊢ ( 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
| 42 |
9 16 41
|
3syl |
⊢ ( 𝜑 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
| 44 |
|
df-ov |
⊢ ( 𝑖 𝑌 𝑗 ) = ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) |
| 45 |
44
|
eqcomi |
⊢ ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) |
| 46 |
45
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) ) |
| 47 |
39 40 43 46
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
| 48 |
36 47
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
| 49 |
33 48
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
| 50 |
49
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) ) |
| 51 |
1 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 52 |
15 40 21 26 51
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 53 |
50 52
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 54 |
53
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 55 |
54
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 56 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
| 57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
| 58 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 59 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 60 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) |
| 61 |
3 1 7 12 56 13 57 58 59 34 60
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 62 |
61
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 63 |
32 55 62
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 64 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 65 |
8 64
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 66 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 67 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑁 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
| 68 |
66 38 67
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
| 69 |
65 68
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 70 |
1 7
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ∧ 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 71 |
2 69 9 70
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 73 |
3 1 7 12 56 13 57 72 59 34 60
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 74 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) |
| 75 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 77 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 78 |
4 6 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 80 |
1 2 3 4 5 6 9 10
|
mamucl |
⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 81 |
|
elmapi |
⊢ ( ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 82 |
|
ffn |
⊢ ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 83 |
80 81 82
|
3syl |
⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 85 |
|
df-ov |
⊢ ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) |
| 86 |
85
|
eqcomi |
⊢ ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) |
| 87 |
86
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) |
| 88 |
79 14 84 87
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 89 |
76 88
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 90 |
74 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 91 |
63 73 90
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
| 92 |
91
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
| 93 |
1 2 3 4 5 6 71 10
|
mamucl |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 94 |
|
elmapi |
⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 95 |
|
ffn |
⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 96 |
93 94 95
|
3syl |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 97 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 98 |
8 97
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 99 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
| 100 |
66 78 99
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
| 101 |
98 100
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 102 |
1 7
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 103 |
2 101 80 102
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 104 |
|
elmapi |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 105 |
|
ffn |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 106 |
103 104 105
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 107 |
|
eqfnov2 |
⊢ ( ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 108 |
96 106 107
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 109 |
92 108
|
mpbird |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ) |