| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamuvs2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 2 |
|
mamuvs2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
mamuvs2.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
mamuvs2.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) |
| 5 |
|
mamuvs2.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
| 6 |
|
mamuvs2.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
mamuvs2.o |
⊢ ( 𝜑 → 𝑂 ∈ Fin ) |
| 8 |
|
mamuvs2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 9 |
|
mamuvs2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
mamuvs2.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 11 |
|
df-ov |
⊢ ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) = ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) |
| 14 |
|
opelxpi |
⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
| 15 |
12 13 14
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
| 16 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 17 |
6 7 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 19 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) |
| 20 |
|
elmapi |
⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 21 |
|
ffn |
⊢ ( 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
| 22 |
10 20 21
|
3syl |
⊢ ( 𝜑 → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
| 24 |
|
df-ov |
⊢ ( 𝑗 𝑍 𝑘 ) = ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) |
| 25 |
24
|
eqcomi |
⊢ ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑗 𝑍 𝑘 ) |
| 26 |
25
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) → ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑗 𝑍 𝑘 ) ) |
| 27 |
18 19 23 26
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) → ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
| 28 |
15 27
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
| 29 |
11 28
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 31 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 32 |
31
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 33 |
1 32
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 35 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 36 |
8 35
|
syl |
⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 37 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 38 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) |
| 39 |
37 38 12
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ) |
| 40 |
10 20
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 42 |
41 12 13
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 43 |
31 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 44 |
31 3
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 45 |
43 44
|
cmn12 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 46 |
34 39 19 42 45
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 47 |
30 46
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 48 |
47
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 51 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 52 |
1 51
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
| 54 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
| 55 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ 𝐵 ) |
| 56 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 57 |
2 3 56 39 42
|
ringcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 58 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) |
| 59 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) |
| 60 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 61 |
58 54 59 60
|
fsuppmptdm |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 62 |
2 50 3 53 54 55 57 61
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 63 |
49 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 64 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ CRing ) |
| 65 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
| 66 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
| 67 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 68 |
|
fconst6g |
⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 69 |
9 68
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 70 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 71 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑁 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ↔ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) ) |
| 72 |
70 17 71
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ↔ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) ) |
| 73 |
69 72
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 74 |
2 3
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ∧ 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 75 |
52 73 10 74
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 77 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) |
| 78 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) |
| 79 |
4 2 3 64 65 54 66 67 76 77 78
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) ) |
| 80 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) |
| 81 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 83 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 84 |
5 7 83
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 86 |
2 52 4 5 6 7 8 10
|
mamucl |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 87 |
|
elmapi |
⊢ ( ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 88 |
|
ffn |
⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 89 |
86 87 88
|
3syl |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 91 |
|
df-ov |
⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) |
| 92 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 93 |
4 2 3 64 65 54 66 67 92 77 78
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 94 |
91 93
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 96 |
85 55 90 95
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 97 |
82 96
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 98 |
80 97
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 99 |
63 79 98
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
| 100 |
99
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
| 101 |
2 52 4 5 6 7 8 75
|
mamucl |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 102 |
|
elmapi |
⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 103 |
|
ffn |
⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 104 |
101 102 103
|
3syl |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 105 |
|
fconst6g |
⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 106 |
9 105
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 107 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
| 108 |
70 84 107
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
| 109 |
106 108
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 110 |
2 3
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 111 |
52 109 86 110
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 112 |
|
elmapi |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 113 |
|
ffn |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 114 |
111 112 113
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 115 |
|
eqfnov2 |
⊢ ( ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 116 |
104 114 115
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 117 |
100 116
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ) |