| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mccllem.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
mccllem.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 3 |
|
mccllem.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) ) |
| 4 |
|
mccllem.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) ) |
| 5 |
|
mccllem.6 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐶 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) |
| 8 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ∈ Fin ) |
| 9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 10 |
|
eldifn |
⊢ ( 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝐷 ∈ 𝐶 ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ¬ 𝐷 ∈ 𝐶 ) |
| 12 |
|
elmapi |
⊢ ( 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) → 𝐵 : ( 𝐶 ∪ { 𝐷 } ) ⟶ ℕ0 ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐵 : ( 𝐶 ∪ { 𝐷 } ) ⟶ ℕ0 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐵 : ( 𝐶 ∪ { 𝐷 } ) ⟶ ℕ0 ) |
| 15 |
|
elun1 |
⊢ ( 𝑘 ∈ 𝐶 → 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ) |
| 17 |
14 16
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 18 |
17
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 19 |
18
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 20 |
|
2fveq3 |
⊢ ( 𝑘 = 𝐷 → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) |
| 21 |
|
snidg |
⊢ ( 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) → 𝐷 ∈ { 𝐷 } ) |
| 22 |
3 21
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ { 𝐷 } ) |
| 23 |
|
elun2 |
⊢ ( 𝐷 ∈ { 𝐷 } → 𝐷 ∈ ( 𝐶 ∪ { 𝐷 } ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ∪ { 𝐷 } ) ) |
| 25 |
13 24
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) ∈ ℕ0 ) |
| 26 |
25
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ∈ ℕ ) |
| 27 |
26
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ∈ ℂ ) |
| 28 |
6 7 9 3 11 19 20 27
|
fprodsplitsn |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) = ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) |
| 30 |
3
|
eldifad |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
| 31 |
|
snssi |
⊢ ( 𝐷 ∈ 𝐴 → { 𝐷 } ⊆ 𝐴 ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → { 𝐷 } ⊆ 𝐴 ) |
| 33 |
2 32
|
unssd |
⊢ ( 𝜑 → ( 𝐶 ∪ { 𝐷 } ) ⊆ 𝐴 ) |
| 34 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐶 ∪ { 𝐷 } ) ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝐷 } ) ∈ Fin ) |
| 35 |
1 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∪ { 𝐷 } ) ∈ Fin ) |
| 36 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 37 |
35 36
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 38 |
37
|
faccld |
⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 39 |
38
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 40 |
6 9 19
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 41 |
40 27
|
mulcld |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 42 |
18
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 43 |
9 19 42
|
fprodn0 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 44 |
26
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ≠ 0 ) |
| 45 |
40 27 43 44
|
mulne0d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ≠ 0 ) |
| 46 |
39 41 45
|
divcld |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
| 47 |
46
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) |
| 48 |
47
|
eqcomd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) = ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) ) |
| 49 |
9 17
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 50 |
49
|
faccld |
⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 51 |
50
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 52 |
|
nnne0 |
⊢ ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 53 |
50 52
|
syl |
⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 54 |
51 53
|
dividd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = 1 ) |
| 55 |
54
|
eqcomd |
⊢ ( 𝜑 → 1 = ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 56 |
40 27
|
mulcomd |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) = ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 58 |
39 27 40 44 43
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 59 |
58
|
eqcomd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 60 |
57 59
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) = ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 61 |
55 60
|
oveq12d |
⊢ ( 𝜑 → ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) = ( ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 62 |
39 27 44
|
divcld |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 63 |
51 51 62 40 53 43
|
divmul13d |
⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 64 |
61 63
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) = ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 65 |
29 48 64
|
3eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 66 |
39 27 51 44 53
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 67 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) |
| 68 |
17
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 69 |
|
csbeq1a |
⊢ ( 𝑘 = 𝐷 → ( 𝐵 ‘ 𝑘 ) = ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 70 |
|
csbfv |
⊢ ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝐷 ) |
| 71 |
70
|
a1i |
⊢ ( 𝜑 → ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝐷 ) ) |
| 72 |
25
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) ∈ ℂ ) |
| 73 |
71 72
|
eqeltrd |
⊢ ( 𝜑 → ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 74 |
6 67 9 30 11 68 69 73
|
fsumsplitsn |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) = ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ( ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 76 |
49
|
nn0cnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 77 |
76 73
|
pncan2d |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 78 |
75 77 71
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) = ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 79 |
78
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) = ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 81 |
80
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 82 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 83 |
37
|
nn0zd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ∈ ℤ ) |
| 84 |
49
|
nn0zd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℤ ) |
| 85 |
49
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) |
| 86 |
25
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 ‘ 𝐷 ) ) |
| 87 |
71
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) = ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 88 |
86 87
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 89 |
49
|
nn0red |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 90 |
25
|
nn0red |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) ∈ ℝ ) |
| 91 |
71 90
|
eqeltrd |
⊢ ( 𝜑 → ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 92 |
89 91
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ↔ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ≤ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 93 |
88 92
|
mpbid |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ≤ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) |
| 94 |
74
|
eqcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) |
| 95 |
93 94
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) |
| 96 |
82 83 84 85 95
|
elfzd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ( 0 ... Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ) |
| 97 |
|
bcval2 |
⊢ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ( 0 ... Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 98 |
96 97
|
syl |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 99 |
98
|
eqcomd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 100 |
66 81 99
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 101 |
|
bccl2 |
⊢ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ( 0 ... Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 102 |
96 101
|
syl |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 103 |
100 102
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 104 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ { 𝐷 } ) |
| 105 |
104
|
a1i |
⊢ ( 𝜑 → 𝐶 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) |
| 106 |
|
elmapssres |
⊢ ( ( 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) ∧ 𝐶 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ↾ 𝐶 ) ∈ ( ℕ0 ↑m 𝐶 ) ) |
| 107 |
4 105 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↾ 𝐶 ) ∈ ( ℕ0 ↑m 𝐶 ) ) |
| 108 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( 𝑏 ‘ 𝑘 ) = ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑏 ‘ 𝑘 ) = ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) ) |
| 110 |
|
fvres |
⊢ ( 𝑘 ∈ 𝐶 → ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 111 |
110
|
adantl |
⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 112 |
109 111
|
eqtrd |
⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 113 |
112
|
sumeq2dv |
⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) |
| 114 |
113
|
fveq2d |
⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 115 |
112
|
fveq2d |
⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 116 |
115
|
prodeq2dv |
⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 117 |
114 116
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 118 |
117
|
eleq1d |
⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 119 |
118
|
rspccva |
⊢ ( ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐶 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ∧ ( 𝐵 ↾ 𝐶 ) ∈ ( ℕ0 ↑m 𝐶 ) ) → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 120 |
5 107 119
|
syl2anc |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 121 |
103 120
|
nnmulcld |
⊢ ( 𝜑 → ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ∈ ℕ ) |
| 122 |
65 121
|
eqeltrd |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |