| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mplcoe2.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
| 7 |
|
mplcoe2.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 8 |
|
mplcoe2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 9 |
|
mplcoe5.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
|
mplcoe5.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
| 11 |
|
mplcoe5.c |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
| 12 |
|
mplcoe5.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐼 ) |
| 13 |
|
vex |
⊢ 𝑥 ∈ V |
| 14 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) |
| 15 |
14
|
elrnmpt |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 16 |
13 15
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 17 |
|
vex |
⊢ 𝑦 ∈ V |
| 18 |
14
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 19 |
17 18
|
mp1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑌 ‘ 𝑘 ) = ( 𝑌 ‘ 𝑙 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑙 ) ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ↔ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 24 |
23
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ↔ ∃ 𝑙 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 27 |
6 26
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
| 28 |
27
|
eqcomi |
⊢ ( +g ‘ 𝐺 ) = ( .r ‘ 𝑃 ) |
| 29 |
1 5 9
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 30 |
|
ringsrg |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ SRing ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ SRing ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝑃 ∈ SRing ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → 𝑃 ∈ SRing ) |
| 34 |
6 25
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 35 |
6
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
| 36 |
29 35
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝐺 ∈ Mnd ) |
| 38 |
12
|
sseld |
⊢ ( 𝜑 → ( 𝑙 ∈ 𝑆 → 𝑙 ∈ 𝐼 ) ) |
| 39 |
38
|
imdistani |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝜑 ∧ 𝑙 ∈ 𝐼 ) ) |
| 40 |
2
|
psrbag |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
| 41 |
5 40
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
| 42 |
10 41
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) |
| 43 |
42
|
simpld |
⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑙 ) ∈ ℕ0 ) |
| 45 |
39 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑙 ) ∈ ℕ0 ) |
| 46 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝐼 ∈ 𝑊 ) |
| 47 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 48 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝑙 ∈ 𝐼 ) |
| 49 |
1 8 25 46 47 48
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑙 ) ∈ ( Base ‘ 𝑃 ) ) |
| 50 |
34 7 37 45 49
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 52 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝐼 ∈ 𝑊 ) |
| 53 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 54 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ∈ 𝐼 ) |
| 55 |
1 8 25 52 53 54
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 56 |
55
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 57 |
43
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 58 |
54 57
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 59 |
58
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 60 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑙 ) ∈ ( Base ‘ 𝑃 ) ) |
| 61 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑙 ) ∈ ℕ0 ) |
| 62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑙 → ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑙 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑥 = 𝑙 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) ) |
| 64 |
62
|
oveq1d |
⊢ ( 𝑥 = 𝑙 → ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
| 65 |
63 64
|
eqeq12d |
⊢ ( 𝑥 = 𝑙 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑉 ‘ 𝑦 ) = ( 𝑉 ‘ 𝑘 ) ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) ) |
| 68 |
66
|
oveq2d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) |
| 69 |
67 68
|
eqeq12d |
⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 70 |
65 69
|
rspc2v |
⊢ ( ( 𝑙 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 71 |
48 54
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) → ( 𝑙 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼 ) ) |
| 72 |
70 71
|
syl11 |
⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) → ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 73 |
72
|
expd |
⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) → ( 𝜑 → ( ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 74 |
11 73
|
mpcom |
⊢ ( 𝜑 → ( ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 75 |
74
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) |
| 76 |
25 28 6 7 33 56 60 61 75
|
srgpcomp |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 77 |
25 28 6 7 33 51 56 59 76
|
srgpcomp |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 78 |
|
oveq12 |
⊢ ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 79 |
|
oveq12 |
⊢ ( ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 80 |
79
|
ancoms |
⊢ ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 81 |
78 80
|
eqeq12d |
⊢ ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 82 |
77 81
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 83 |
82
|
expd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 84 |
83
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 85 |
84
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 86 |
85
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 87 |
24 86
|
biimtrid |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 88 |
19 87
|
sylbid |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 89 |
88
|
com23 |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 90 |
16 89
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 91 |
90
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∧ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 92 |
91
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 93 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 94 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝐺 ∈ Mnd ) |
| 95 |
12
|
sseld |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑆 → 𝑘 ∈ 𝐼 ) ) |
| 96 |
95
|
imdistani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ) |
| 97 |
96 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 98 |
55 34
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
| 99 |
93 7 94 97 98
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 100 |
99
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) : 𝑆 ⟶ ( Base ‘ 𝐺 ) ) |
| 101 |
100
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 102 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 103 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 104 |
93 102 103
|
sscntz |
⊢ ( ( ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ∧ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 105 |
101 101 104
|
syl2anc |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 106 |
92 105
|
mpbird |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |