| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplcoe1.p |
|
| 2 |
|
mplcoe1.d |
|
| 3 |
|
mplcoe1.z |
|
| 4 |
|
mplcoe1.o |
|
| 5 |
|
mplcoe1.i |
|
| 6 |
|
mplcoe2.g |
|
| 7 |
|
mplcoe2.m |
|
| 8 |
|
mplcoe2.v |
|
| 9 |
|
mplcoe5.r |
|
| 10 |
|
mplcoe5.y |
|
| 11 |
|
mplcoe5.c |
|
| 12 |
|
mplcoe5.s |
|
| 13 |
|
vex |
|
| 14 |
|
eqid |
|
| 15 |
14
|
elrnmpt |
|
| 16 |
13 15
|
mp1i |
|
| 17 |
|
vex |
|
| 18 |
14
|
elrnmpt |
|
| 19 |
17 18
|
mp1i |
|
| 20 |
|
fveq2 |
|
| 21 |
|
fveq2 |
|
| 22 |
20 21
|
oveq12d |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
23
|
cbvrexvw |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
6 26
|
mgpplusg |
|
| 28 |
27
|
eqcomi |
|
| 29 |
1 5 9
|
mplringd |
|
| 30 |
|
ringsrg |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
adantr |
|
| 34 |
6 25
|
mgpbas |
|
| 35 |
6
|
ringmgp |
|
| 36 |
29 35
|
syl |
|
| 37 |
36
|
adantr |
|
| 38 |
12
|
sseld |
|
| 39 |
38
|
imdistani |
|
| 40 |
2
|
psrbag |
|
| 41 |
5 40
|
syl |
|
| 42 |
10 41
|
mpbid |
|
| 43 |
42
|
simpld |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
39 44
|
syl |
|
| 46 |
5
|
adantr |
|
| 47 |
9
|
adantr |
|
| 48 |
12
|
sselda |
|
| 49 |
1 8 25 46 47 48
|
mvrcl |
|
| 50 |
34 7 37 45 49
|
mulgnn0cld |
|
| 51 |
50
|
adantr |
|
| 52 |
5
|
adantr |
|
| 53 |
9
|
adantr |
|
| 54 |
12
|
sselda |
|
| 55 |
1 8 25 52 53 54
|
mvrcl |
|
| 56 |
55
|
adantlr |
|
| 57 |
43
|
ffvelcdmda |
|
| 58 |
54 57
|
syldan |
|
| 59 |
58
|
adantlr |
|
| 60 |
49
|
adantr |
|
| 61 |
45
|
adantr |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
62
|
oveq1d |
|
| 65 |
63 64
|
eqeq12d |
|
| 66 |
|
fveq2 |
|
| 67 |
66
|
oveq1d |
|
| 68 |
66
|
oveq2d |
|
| 69 |
67 68
|
eqeq12d |
|
| 70 |
65 69
|
rspc2v |
|
| 71 |
48 54
|
anim12dan |
|
| 72 |
70 71
|
syl11 |
|
| 73 |
72
|
expd |
|
| 74 |
11 73
|
mpcom |
|
| 75 |
74
|
impl |
|
| 76 |
25 28 6 7 33 56 60 61 75
|
srgpcomp |
|
| 77 |
25 28 6 7 33 51 56 59 76
|
srgpcomp |
|
| 78 |
|
oveq12 |
|
| 79 |
|
oveq12 |
|
| 80 |
79
|
ancoms |
|
| 81 |
78 80
|
eqeq12d |
|
| 82 |
77 81
|
syl5ibrcom |
|
| 83 |
82
|
expd |
|
| 84 |
83
|
rexlimdva |
|
| 85 |
84
|
com23 |
|
| 86 |
85
|
rexlimdva |
|
| 87 |
24 86
|
biimtrid |
|
| 88 |
19 87
|
sylbid |
|
| 89 |
88
|
com23 |
|
| 90 |
16 89
|
sylbid |
|
| 91 |
90
|
imp32 |
|
| 92 |
91
|
ralrimivva |
|
| 93 |
|
eqid |
|
| 94 |
36
|
adantr |
|
| 95 |
12
|
sseld |
|
| 96 |
95
|
imdistani |
|
| 97 |
96 57
|
syl |
|
| 98 |
55 34
|
eleqtrdi |
|
| 99 |
93 7 94 97 98
|
mulgnn0cld |
|
| 100 |
99
|
fmpttd |
|
| 101 |
100
|
frnd |
|
| 102 |
|
eqid |
|
| 103 |
|
eqid |
|
| 104 |
93 102 103
|
sscntz |
|
| 105 |
101 101 104
|
syl2anc |
|
| 106 |
92 105
|
mpbird |
|