| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyrem.1 |
⊢ 𝐺 = ( Xp ∘f − ( ℂ × { 𝐴 } ) ) |
| 2 |
|
plyrem.2 |
⊢ 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) |
| 3 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
| 4 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 5 |
3 4
|
sselid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
| 6 |
1
|
plyremlem |
⊢ ( 𝐴 ∈ ℂ → ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝐺 ) = 1 ∧ ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝐺 ) = 1 ∧ ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) ) |
| 8 |
7
|
simp1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
| 9 |
7
|
simp2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( deg ‘ 𝐺 ) = 1 ) |
| 10 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 11 |
10
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 1 ≠ 0 ) |
| 12 |
9 11
|
eqnetrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( deg ‘ 𝐺 ) ≠ 0 ) |
| 13 |
|
fveq2 |
⊢ ( 𝐺 = 0𝑝 → ( deg ‘ 𝐺 ) = ( deg ‘ 0𝑝 ) ) |
| 14 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
| 15 |
13 14
|
eqtrdi |
⊢ ( 𝐺 = 0𝑝 → ( deg ‘ 𝐺 ) = 0 ) |
| 16 |
15
|
necon3i |
⊢ ( ( deg ‘ 𝐺 ) ≠ 0 → 𝐺 ≠ 0𝑝 ) |
| 17 |
12 16
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐺 ≠ 0𝑝 ) |
| 18 |
2
|
quotdgr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
| 19 |
5 8 17 18
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
| 20 |
|
0lt1 |
⊢ 0 < 1 |
| 21 |
20 9
|
breqtrrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 0 < ( deg ‘ 𝐺 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑅 = 0𝑝 → ( deg ‘ 𝑅 ) = ( deg ‘ 0𝑝 ) ) |
| 23 |
22 14
|
eqtrdi |
⊢ ( 𝑅 = 0𝑝 → ( deg ‘ 𝑅 ) = 0 ) |
| 24 |
23
|
breq1d |
⊢ ( 𝑅 = 0𝑝 → ( ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ↔ 0 < ( deg ‘ 𝐺 ) ) ) |
| 25 |
21 24
|
syl5ibrcom |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑅 = 0𝑝 → ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
| 26 |
|
pm2.62 |
⊢ ( ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) → ( ( 𝑅 = 0𝑝 → ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) → ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
| 27 |
19 25 26
|
sylc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) |
| 28 |
27 9
|
breqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( deg ‘ 𝑅 ) < 1 ) |
| 29 |
|
quotcl2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ∈ ( Poly ‘ ℂ ) ∧ 𝐺 ≠ 0𝑝 ) → ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
| 30 |
5 8 17 29
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) |
| 31 |
|
plymulcl |
⊢ ( ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
| 32 |
8 30 31
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) |
| 33 |
|
plysubcl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ∈ ( Poly ‘ ℂ ) ) → ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 34 |
5 32 33
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 35 |
2 34
|
eqeltrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝑅 ∈ ( Poly ‘ ℂ ) ) |
| 36 |
|
dgrcl |
⊢ ( 𝑅 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝑅 ) ∈ ℕ0 ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( deg ‘ 𝑅 ) ∈ ℕ0 ) |
| 38 |
|
nn0lt10b |
⊢ ( ( deg ‘ 𝑅 ) ∈ ℕ0 → ( ( deg ‘ 𝑅 ) < 1 ↔ ( deg ‘ 𝑅 ) = 0 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ( deg ‘ 𝑅 ) < 1 ↔ ( deg ‘ 𝑅 ) = 0 ) ) |
| 40 |
28 39
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( deg ‘ 𝑅 ) = 0 ) |
| 41 |
|
0dgrb |
⊢ ( 𝑅 ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ 𝑅 ) = 0 ↔ 𝑅 = ( ℂ × { ( 𝑅 ‘ 0 ) } ) ) ) |
| 42 |
35 41
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ( deg ‘ 𝑅 ) = 0 ↔ 𝑅 = ( ℂ × { ( 𝑅 ‘ 0 ) } ) ) ) |
| 43 |
40 42
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝑅 = ( ℂ × { ( 𝑅 ‘ 0 ) } ) ) |
| 44 |
43
|
fveq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑅 ‘ 𝐴 ) = ( ( ℂ × { ( 𝑅 ‘ 0 ) } ) ‘ 𝐴 ) ) |
| 45 |
2
|
fveq1i |
⊢ ( 𝑅 ‘ 𝐴 ) = ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ‘ 𝐴 ) |
| 46 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) |
| 48 |
47
|
ffnd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐹 Fn ℂ ) |
| 49 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ ℂ ) → 𝐺 : ℂ ⟶ ℂ ) |
| 50 |
8 49
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐺 : ℂ ⟶ ℂ ) |
| 51 |
50
|
ffnd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐺 Fn ℂ ) |
| 52 |
|
plyf |
⊢ ( ( 𝐹 quot 𝐺 ) ∈ ( Poly ‘ ℂ ) → ( 𝐹 quot 𝐺 ) : ℂ ⟶ ℂ ) |
| 53 |
30 52
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 quot 𝐺 ) : ℂ ⟶ ℂ ) |
| 54 |
53
|
ffnd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 quot 𝐺 ) Fn ℂ ) |
| 55 |
|
cnex |
⊢ ℂ ∈ V |
| 56 |
55
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ℂ ∈ V ) |
| 57 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
| 58 |
51 54 56 56 57
|
offn |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) Fn ℂ ) |
| 59 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 60 |
7
|
simp3d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) |
| 61 |
|
ssun1 |
⊢ ( ◡ 𝐺 “ { 0 } ) ⊆ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) |
| 62 |
60 61
|
eqsstrrdi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → { 𝐴 } ⊆ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ) |
| 63 |
|
snssg |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ↔ { 𝐴 } ⊆ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ↔ { 𝐴 } ⊆ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ) ) |
| 65 |
62 64
|
mpbird |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ) |
| 66 |
|
ofmulrt |
⊢ ( ( ℂ ∈ V ∧ 𝐺 : ℂ ⟶ ℂ ∧ ( 𝐹 quot 𝐺 ) : ℂ ⟶ ℂ ) → ( ◡ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) “ { 0 } ) = ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ) |
| 67 |
56 50 53 66
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ◡ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) “ { 0 } ) = ( ( ◡ 𝐺 “ { 0 } ) ∪ ( ◡ ( 𝐹 quot 𝐺 ) “ { 0 } ) ) ) |
| 68 |
65 67
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ( ◡ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) “ { 0 } ) ) |
| 69 |
|
fniniseg |
⊢ ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) Fn ℂ → ( 𝐴 ∈ ( ◡ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ‘ 𝐴 ) = 0 ) ) ) |
| 70 |
58 69
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ( ◡ ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ‘ 𝐴 ) = 0 ) ) ) |
| 71 |
68 70
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ‘ 𝐴 ) = 0 ) ) |
| 72 |
71
|
simprd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ‘ 𝐴 ) = 0 ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ‘ 𝐴 ) = 0 ) |
| 74 |
48 58 56 56 57 59 73
|
ofval |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) − 0 ) ) |
| 75 |
74
|
anabss3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐹 ∘f − ( 𝐺 ∘f · ( 𝐹 quot 𝐺 ) ) ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) − 0 ) ) |
| 76 |
45 75
|
eqtrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑅 ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) − 0 ) ) |
| 77 |
46
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 78 |
77
|
subid1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐹 ‘ 𝐴 ) − 0 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 79 |
76 78
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑅 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 80 |
|
fvex |
⊢ ( 𝑅 ‘ 0 ) ∈ V |
| 81 |
80
|
fvconst2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { ( 𝑅 ‘ 0 ) } ) ‘ 𝐴 ) = ( 𝑅 ‘ 0 ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ( ℂ × { ( 𝑅 ‘ 0 ) } ) ‘ 𝐴 ) = ( 𝑅 ‘ 0 ) ) |
| 83 |
44 79 82
|
3eqtr3d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ‘ 𝐴 ) = ( 𝑅 ‘ 0 ) ) |
| 84 |
83
|
sneqd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → { ( 𝐹 ‘ 𝐴 ) } = { ( 𝑅 ‘ 0 ) } ) |
| 85 |
84
|
xpeq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → ( ℂ × { ( 𝐹 ‘ 𝐴 ) } ) = ( ℂ × { ( 𝑅 ‘ 0 ) } ) ) |
| 86 |
43 85
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 ∈ ℂ ) → 𝑅 = ( ℂ × { ( 𝐹 ‘ 𝐴 ) } ) ) |