Metamath Proof Explorer


Theorem pmtrcnelor

Description: Composing a permutation F with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s 𝑆 = ( SymGrp ‘ 𝐷 )
pmtrcnel.t 𝑇 = ( pmTrsp ‘ 𝐷 )
pmtrcnel.b 𝐵 = ( Base ‘ 𝑆 )
pmtrcnel.j 𝐽 = ( 𝐹𝐼 )
pmtrcnel.d ( 𝜑𝐷𝑉 )
pmtrcnel.f ( 𝜑𝐹𝐵 )
pmtrcnel.i ( 𝜑𝐼 ∈ dom ( 𝐹 ∖ I ) )
pmtrcnel.e 𝐸 = dom ( 𝐹 ∖ I )
pmtrcnel.a 𝐴 = dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I )
Assertion pmtrcnelor ( 𝜑 → ( 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∨ 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) )

Proof

Step Hyp Ref Expression
1 pmtrcnel.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 pmtrcnel.t 𝑇 = ( pmTrsp ‘ 𝐷 )
3 pmtrcnel.b 𝐵 = ( Base ‘ 𝑆 )
4 pmtrcnel.j 𝐽 = ( 𝐹𝐼 )
5 pmtrcnel.d ( 𝜑𝐷𝑉 )
6 pmtrcnel.f ( 𝜑𝐹𝐵 )
7 pmtrcnel.i ( 𝜑𝐼 ∈ dom ( 𝐹 ∖ I ) )
8 pmtrcnel.e 𝐸 = dom ( 𝐹 ∖ I )
9 pmtrcnel.a 𝐴 = dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I )
10 1 2 3 4 5 6 7 pmtrcnel ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
11 8 difeq1i ( 𝐸 ∖ { 𝐼 } ) = ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } )
12 10 9 11 3sstr4g ( 𝜑𝐴 ⊆ ( 𝐸 ∖ { 𝐼 } ) )
13 12 ssdifd ( 𝜑 → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ⊆ ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) )
14 difpr ( 𝐸 ∖ { 𝐼 , 𝐽 } ) = ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } )
15 14 difeq2i ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) )
16 1 3 symgbasf1o ( 𝐹𝐵𝐹 : 𝐷1-1-onto𝐷 )
17 6 16 syl ( 𝜑𝐹 : 𝐷1-1-onto𝐷 )
18 f1omvdmvd ( ( 𝐹 : 𝐷1-1-onto𝐷𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
19 17 7 18 syl2anc ( 𝜑 → ( 𝐹𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
20 4 19 eqeltrid ( 𝜑𝐽 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
21 20 eldifad ( 𝜑𝐽 ∈ dom ( 𝐹 ∖ I ) )
22 21 8 eleqtrrdi ( 𝜑𝐽𝐸 )
23 4 a1i ( 𝜑𝐽 = ( 𝐹𝐼 ) )
24 f1of ( 𝐹 : 𝐷1-1-onto𝐷𝐹 : 𝐷𝐷 )
25 17 24 syl ( 𝜑𝐹 : 𝐷𝐷 )
26 25 ffnd ( 𝜑𝐹 Fn 𝐷 )
27 difss ( 𝐹 ∖ I ) ⊆ 𝐹
28 dmss ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 )
29 27 28 ax-mp dom ( 𝐹 ∖ I ) ⊆ dom 𝐹
30 29 7 sseldi ( 𝜑𝐼 ∈ dom 𝐹 )
31 25 fdmd ( 𝜑 → dom 𝐹 = 𝐷 )
32 30 31 eleqtrd ( 𝜑𝐼𝐷 )
33 fnelnfp ( ( 𝐹 Fn 𝐷𝐼𝐷 ) → ( 𝐼 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝐼 ) ≠ 𝐼 ) )
34 33 biimpa ( ( ( 𝐹 Fn 𝐷𝐼𝐷 ) ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝐼 ) ≠ 𝐼 )
35 26 32 7 34 syl21anc ( 𝜑 → ( 𝐹𝐼 ) ≠ 𝐼 )
36 23 35 eqnetrd ( 𝜑𝐽𝐼 )
37 eldifsn ( 𝐽 ∈ ( 𝐸 ∖ { 𝐼 } ) ↔ ( 𝐽𝐸𝐽𝐼 ) )
38 22 36 37 sylanbrc ( 𝜑𝐽 ∈ ( 𝐸 ∖ { 𝐼 } ) )
39 38 snssd ( 𝜑 → { 𝐽 } ⊆ ( 𝐸 ∖ { 𝐼 } ) )
40 dfss4 ( { 𝐽 } ⊆ ( 𝐸 ∖ { 𝐼 } ) ↔ ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ) = { 𝐽 } )
41 39 40 sylib ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ) = { 𝐽 } )
42 15 41 syl5eq ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } )
43 13 42 sseqtrd ( 𝜑 → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ⊆ { 𝐽 } )
44 sssn ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ⊆ { 𝐽 } ↔ ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∨ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) )
45 43 44 sylib ( 𝜑 → ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∨ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) )
46 simpr ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ )
47 1 2 3 4 5 6 7 pmtrcnel2 ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )
48 8 difeq1i ( 𝐸 ∖ { 𝐼 , 𝐽 } ) = ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } )
49 47 48 9 3sstr4g ( 𝜑 → ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ⊆ 𝐴 )
50 ssdif0 ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ⊆ 𝐴 ↔ ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ )
51 49 50 sylib ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ )
52 51 adantr ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) → ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ )
53 eqdif ( ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∧ ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ ) → 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) )
54 46 52 53 syl2anc ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) → 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) )
55 54 ex ( 𝜑 → ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ → 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) )
56 12 adantr ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → 𝐴 ⊆ ( 𝐸 ∖ { 𝐼 } ) )
57 14 49 eqsstrrid ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ⊆ 𝐴 )
58 57 adantr ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ⊆ 𝐴 )
59 ssundif ( ( 𝐸 ∖ { 𝐼 } ) ⊆ ( { 𝐽 } ∪ 𝐴 ) ↔ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ⊆ 𝐴 )
60 58 59 sylibr ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐸 ∖ { 𝐼 } ) ⊆ ( { 𝐽 } ∪ 𝐴 ) )
61 ssidd ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → { 𝐽 } ⊆ { 𝐽 } )
62 simpr ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } )
63 61 62 sseqtrrd ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → { 𝐽 } ⊆ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) )
64 63 difss2d ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → { 𝐽 } ⊆ 𝐴 )
65 ssequn1 ( { 𝐽 } ⊆ 𝐴 ↔ ( { 𝐽 } ∪ 𝐴 ) = 𝐴 )
66 64 65 sylib ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( { 𝐽 } ∪ 𝐴 ) = 𝐴 )
67 60 66 sseqtrd ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐸 ∖ { 𝐼 } ) ⊆ 𝐴 )
68 56 67 eqssd ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → 𝐴 = ( 𝐸 ∖ { 𝐼 } ) )
69 68 ex ( 𝜑 → ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } → 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) )
70 55 69 orim12d ( 𝜑 → ( ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∨ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∨ 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) ) )
71 45 70 mpd ( 𝜑 → ( 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∨ 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) )