| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrcnel.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrcnel.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | pmtrcnel.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | pmtrcnel.j | ⊢ 𝐽  =  ( 𝐹 ‘ 𝐼 ) | 
						
							| 5 |  | pmtrcnel.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 6 |  | pmtrcnel.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | pmtrcnel.i | ⊢ ( 𝜑  →  𝐼  ∈  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 8 |  | pmtrcnel.e | ⊢ 𝐸  =  dom  ( 𝐹  ∖   I  ) | 
						
							| 9 |  | pmtrcnel.a | ⊢ 𝐴  =  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) | 
						
							| 10 | 1 2 3 4 5 6 7 | pmtrcnel | ⊢ ( 𝜑  →  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ⊆  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 } ) ) | 
						
							| 11 | 8 | difeq1i | ⊢ ( 𝐸  ∖  { 𝐼 } )  =  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 } ) | 
						
							| 12 | 10 9 11 | 3sstr4g | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐸  ∖  { 𝐼 } ) ) | 
						
							| 13 | 12 | ssdifd | ⊢ ( 𝜑  →  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  ⊆  ( ( 𝐸  ∖  { 𝐼 } )  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) ) ) | 
						
							| 14 |  | difpr | ⊢ ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  =  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } ) | 
						
							| 15 | 14 | difeq2i | ⊢ ( ( 𝐸  ∖  { 𝐼 } )  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ( ( 𝐸  ∖  { 𝐼 } )  ∖  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } ) ) | 
						
							| 16 | 1 3 | symgbasf1o | ⊢ ( 𝐹  ∈  𝐵  →  𝐹 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 18 |  | f1omvdmvd | ⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ 𝐷  ∧  𝐼  ∈  dom  ( 𝐹  ∖   I  ) )  →  ( 𝐹 ‘ 𝐼 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 } ) ) | 
						
							| 19 | 17 7 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐼 )  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 } ) ) | 
						
							| 20 | 4 19 | eqeltrid | ⊢ ( 𝜑  →  𝐽  ∈  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 } ) ) | 
						
							| 21 | 20 | eldifad | ⊢ ( 𝜑  →  𝐽  ∈  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 22 | 21 8 | eleqtrrdi | ⊢ ( 𝜑  →  𝐽  ∈  𝐸 ) | 
						
							| 23 | 4 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 24 |  | f1of | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷  →  𝐹 : 𝐷 ⟶ 𝐷 ) | 
						
							| 25 | 17 24 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ 𝐷 ) | 
						
							| 26 | 25 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
						
							| 27 |  | difss | ⊢ ( 𝐹  ∖   I  )  ⊆  𝐹 | 
						
							| 28 |  | dmss | ⊢ ( ( 𝐹  ∖   I  )  ⊆  𝐹  →  dom  ( 𝐹  ∖   I  )  ⊆  dom  𝐹 ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ dom  ( 𝐹  ∖   I  )  ⊆  dom  𝐹 | 
						
							| 30 | 29 7 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  dom  𝐹 ) | 
						
							| 31 | 25 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐷 ) | 
						
							| 32 | 30 31 | eleqtrd | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 33 |  | fnelnfp | ⊢ ( ( 𝐹  Fn  𝐷  ∧  𝐼  ∈  𝐷 )  →  ( 𝐼  ∈  dom  ( 𝐹  ∖   I  )  ↔  ( 𝐹 ‘ 𝐼 )  ≠  𝐼 ) ) | 
						
							| 34 | 33 | biimpa | ⊢ ( ( ( 𝐹  Fn  𝐷  ∧  𝐼  ∈  𝐷 )  ∧  𝐼  ∈  dom  ( 𝐹  ∖   I  ) )  →  ( 𝐹 ‘ 𝐼 )  ≠  𝐼 ) | 
						
							| 35 | 26 32 7 34 | syl21anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐼 )  ≠  𝐼 ) | 
						
							| 36 | 23 35 | eqnetrd | ⊢ ( 𝜑  →  𝐽  ≠  𝐼 ) | 
						
							| 37 |  | eldifsn | ⊢ ( 𝐽  ∈  ( 𝐸  ∖  { 𝐼 } )  ↔  ( 𝐽  ∈  𝐸  ∧  𝐽  ≠  𝐼 ) ) | 
						
							| 38 | 22 36 37 | sylanbrc | ⊢ ( 𝜑  →  𝐽  ∈  ( 𝐸  ∖  { 𝐼 } ) ) | 
						
							| 39 | 38 | snssd | ⊢ ( 𝜑  →  { 𝐽 }  ⊆  ( 𝐸  ∖  { 𝐼 } ) ) | 
						
							| 40 |  | dfss4 | ⊢ ( { 𝐽 }  ⊆  ( 𝐸  ∖  { 𝐼 } )  ↔  ( ( 𝐸  ∖  { 𝐼 } )  ∖  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } ) )  =  { 𝐽 } ) | 
						
							| 41 | 39 40 | sylib | ⊢ ( 𝜑  →  ( ( 𝐸  ∖  { 𝐼 } )  ∖  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } ) )  =  { 𝐽 } ) | 
						
							| 42 | 15 41 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐸  ∖  { 𝐼 } )  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } ) | 
						
							| 43 | 13 42 | sseqtrd | ⊢ ( 𝜑  →  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  ⊆  { 𝐽 } ) | 
						
							| 44 |  | sssn | ⊢ ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  ⊆  { 𝐽 }  ↔  ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅  ∨  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } ) ) | 
						
							| 45 | 43 44 | sylib | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅  ∨  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅ )  →  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅ ) | 
						
							| 47 | 1 2 3 4 5 6 7 | pmtrcnel2 | ⊢ ( 𝜑  →  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 ,  𝐽 } )  ⊆  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) ) | 
						
							| 48 | 8 | difeq1i | ⊢ ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  =  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 ,  𝐽 } ) | 
						
							| 49 | 47 48 9 | 3sstr4g | ⊢ ( 𝜑  →  ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ⊆  𝐴 ) | 
						
							| 50 |  | ssdif0 | ⊢ ( ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ⊆  𝐴  ↔  ( ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ∖  𝐴 )  =  ∅ ) | 
						
							| 51 | 49 50 | sylib | ⊢ ( 𝜑  →  ( ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ∖  𝐴 )  =  ∅ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅ )  →  ( ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ∖  𝐴 )  =  ∅ ) | 
						
							| 53 |  | eqdif | ⊢ ( ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅  ∧  ( ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ∖  𝐴 )  =  ∅ )  →  𝐴  =  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) ) | 
						
							| 54 | 46 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅ )  →  𝐴  =  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) ) | 
						
							| 55 | 54 | ex | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅  →  𝐴  =  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) ) ) | 
						
							| 56 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  𝐴  ⊆  ( 𝐸  ∖  { 𝐼 } ) ) | 
						
							| 57 | 14 49 | eqsstrrid | ⊢ ( 𝜑  →  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } )  ⊆  𝐴 ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } )  ⊆  𝐴 ) | 
						
							| 59 |  | ssundif | ⊢ ( ( 𝐸  ∖  { 𝐼 } )  ⊆  ( { 𝐽 }  ∪  𝐴 )  ↔  ( ( 𝐸  ∖  { 𝐼 } )  ∖  { 𝐽 } )  ⊆  𝐴 ) | 
						
							| 60 | 58 59 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  ( 𝐸  ∖  { 𝐼 } )  ⊆  ( { 𝐽 }  ∪  𝐴 ) ) | 
						
							| 61 |  | ssidd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  { 𝐽 }  ⊆  { 𝐽 } ) | 
						
							| 62 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } ) | 
						
							| 63 | 61 62 | sseqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  { 𝐽 }  ⊆  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) ) ) | 
						
							| 64 | 63 | difss2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  { 𝐽 }  ⊆  𝐴 ) | 
						
							| 65 |  | ssequn1 | ⊢ ( { 𝐽 }  ⊆  𝐴  ↔  ( { 𝐽 }  ∪  𝐴 )  =  𝐴 ) | 
						
							| 66 | 64 65 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  ( { 𝐽 }  ∪  𝐴 )  =  𝐴 ) | 
						
							| 67 | 60 66 | sseqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  ( 𝐸  ∖  { 𝐼 } )  ⊆  𝐴 ) | 
						
							| 68 | 56 67 | eqssd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  𝐴  =  ( 𝐸  ∖  { 𝐼 } ) ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 }  →  𝐴  =  ( 𝐸  ∖  { 𝐼 } ) ) ) | 
						
							| 70 | 55 69 | orim12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  ∅  ∨  ( 𝐴  ∖  ( 𝐸  ∖  { 𝐼 ,  𝐽 } ) )  =  { 𝐽 } )  →  ( 𝐴  =  ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ∨  𝐴  =  ( 𝐸  ∖  { 𝐼 } ) ) ) ) | 
						
							| 71 | 45 70 | mpd | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝐸  ∖  { 𝐼 ,  𝐽 } )  ∨  𝐴  =  ( 𝐸  ∖  { 𝐼 } ) ) ) |