| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrcnel.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrcnel.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | pmtrcnel.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | pmtrcnel.j | ⊢ 𝐽  =  ( 𝐹 ‘ 𝐼 ) | 
						
							| 5 |  | pmtrcnel.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 6 |  | pmtrcnel.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | pmtrcnel.i | ⊢ ( 𝜑  →  𝐼  ∈  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 8 |  | mvdco | ⊢ dom  ( ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) )  ∖   I  )  ⊆  ( dom  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  ∪  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  dom  ( ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) )  ∖   I  )  ⊆  ( dom  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  ∪  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) ) ) | 
						
							| 10 |  | coass | ⊢ ( ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) )  ∘  𝐹 )  =  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) ) | 
						
							| 11 |  | difss | ⊢ ( 𝐹  ∖   I  )  ⊆  𝐹 | 
						
							| 12 |  | dmss | ⊢ ( ( 𝐹  ∖   I  )  ⊆  𝐹  →  dom  ( 𝐹  ∖   I  )  ⊆  dom  𝐹 ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ dom  ( 𝐹  ∖   I  )  ⊆  dom  𝐹 | 
						
							| 14 | 13 7 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  dom  𝐹 ) | 
						
							| 15 | 1 3 | symgbasf1o | ⊢ ( 𝐹  ∈  𝐵  →  𝐹 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 16 |  | f1of | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷  →  𝐹 : 𝐷 ⟶ 𝐷 ) | 
						
							| 17 | 6 15 16 | 3syl | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ 𝐷 ) | 
						
							| 18 | 17 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐷 ) | 
						
							| 19 | 14 18 | eleqtrd | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 20 | 17 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐼 )  ∈  𝐷 ) | 
						
							| 21 | 4 20 | eqeltrid | ⊢ ( 𝜑  →  𝐽  ∈  𝐷 ) | 
						
							| 22 | 19 21 | prssd | ⊢ ( 𝜑  →  { 𝐼 ,  𝐽 }  ⊆  𝐷 ) | 
						
							| 23 | 17 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
						
							| 24 |  | fnelnfp | ⊢ ( ( 𝐹  Fn  𝐷  ∧  𝐼  ∈  𝐷 )  →  ( 𝐼  ∈  dom  ( 𝐹  ∖   I  )  ↔  ( 𝐹 ‘ 𝐼 )  ≠  𝐼 ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( ( 𝐹  Fn  𝐷  ∧  𝐼  ∈  𝐷 )  ∧  𝐼  ∈  dom  ( 𝐹  ∖   I  ) )  →  ( 𝐹 ‘ 𝐼 )  ≠  𝐼 ) | 
						
							| 26 | 23 19 7 25 | syl21anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐼 )  ≠  𝐼 ) | 
						
							| 27 | 26 | necomd | ⊢ ( 𝜑  →  𝐼  ≠  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 28 | 4 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 29 | 27 28 | neeqtrrd | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 30 |  | enpr2 | ⊢ ( ( 𝐼  ∈  𝐷  ∧  𝐽  ∈  𝐷  ∧  𝐼  ≠  𝐽 )  →  { 𝐼 ,  𝐽 }  ≈  2o ) | 
						
							| 31 | 19 21 29 30 | syl3anc | ⊢ ( 𝜑  →  { 𝐼 ,  𝐽 }  ≈  2o ) | 
						
							| 32 |  | eqid | ⊢ ran  𝑇  =  ran  𝑇 | 
						
							| 33 | 2 32 | pmtrrn | ⊢ ( ( 𝐷  ∈  𝑉  ∧  { 𝐼 ,  𝐽 }  ⊆  𝐷  ∧  { 𝐼 ,  𝐽 }  ≈  2o )  →  ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∈  ran  𝑇 ) | 
						
							| 34 | 5 22 31 33 | syl3anc | ⊢ ( 𝜑  →  ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∈  ran  𝑇 ) | 
						
							| 35 | 2 32 | pmtrff1o | ⊢ ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∈  ran  𝑇  →  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 36 |  | f1ococnv1 | ⊢ ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) : 𝐷 –1-1-onto→ 𝐷  →  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 37 | 34 35 36 | 3syl | ⊢ ( 𝜑  →  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 38 | 37 | coeq1d | ⊢ ( 𝜑  →  ( ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) )  ∘  𝐹 )  =  ( (  I   ↾  𝐷 )  ∘  𝐹 ) ) | 
						
							| 39 | 10 38 | eqtr3id | ⊢ ( 𝜑  →  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) )  =  ( (  I   ↾  𝐷 )  ∘  𝐹 ) ) | 
						
							| 40 |  | fcoi2 | ⊢ ( 𝐹 : 𝐷 ⟶ 𝐷  →  ( (  I   ↾  𝐷 )  ∘  𝐹 )  =  𝐹 ) | 
						
							| 41 | 17 40 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  𝐷 )  ∘  𝐹 )  =  𝐹 ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( 𝜑  →  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) )  =  𝐹 ) | 
						
							| 43 | 42 | difeq1d | ⊢ ( 𝜑  →  ( ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) )  ∖   I  )  =  ( 𝐹  ∖   I  ) ) | 
						
							| 44 | 43 | dmeqd | ⊢ ( 𝜑  →  dom  ( ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 ) )  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 45 | 2 32 | pmtrfcnv | ⊢ ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∈  ran  𝑇  →  ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  =  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) ) | 
						
							| 46 | 34 45 | syl | ⊢ ( 𝜑  →  ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  =  ( 𝑇 ‘ { 𝐼 ,  𝐽 } ) ) | 
						
							| 47 | 46 | difeq1d | ⊢ ( 𝜑  →  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  =  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  ) ) | 
						
							| 48 | 47 | dmeqd | ⊢ ( 𝜑  →  dom  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  =  dom  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  ) ) | 
						
							| 49 | 2 | pmtrmvd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  { 𝐼 ,  𝐽 }  ⊆  𝐷  ∧  { 𝐼 ,  𝐽 }  ≈  2o )  →  dom  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  =  { 𝐼 ,  𝐽 } ) | 
						
							| 50 | 5 22 31 49 | syl3anc | ⊢ ( 𝜑  →  dom  ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  =  { 𝐼 ,  𝐽 } ) | 
						
							| 51 | 48 50 | eqtrd | ⊢ ( 𝜑  →  dom  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  =  { 𝐼 ,  𝐽 } ) | 
						
							| 52 | 51 | uneq1d | ⊢ ( 𝜑  →  ( dom  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  ∪  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) )  =  ( { 𝐼 ,  𝐽 }  ∪  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) ) ) | 
						
							| 53 |  | uncom | ⊢ ( { 𝐼 ,  𝐽 }  ∪  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) )  =  ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∪  { 𝐼 ,  𝐽 } ) | 
						
							| 54 | 52 53 | eqtrdi | ⊢ ( 𝜑  →  ( dom  ( ◡ ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∖   I  )  ∪  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) )  =  ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∪  { 𝐼 ,  𝐽 } ) ) | 
						
							| 55 | 9 44 54 | 3sstr3d | ⊢ ( 𝜑  →  dom  ( 𝐹  ∖   I  )  ⊆  ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∪  { 𝐼 ,  𝐽 } ) ) | 
						
							| 56 | 55 | ssdifd | ⊢ ( 𝜑  →  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 ,  𝐽 } )  ⊆  ( ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∪  { 𝐼 ,  𝐽 } )  ∖  { 𝐼 ,  𝐽 } ) ) | 
						
							| 57 |  | difun2 | ⊢ ( ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∪  { 𝐼 ,  𝐽 } )  ∖  { 𝐼 ,  𝐽 } )  =  ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∖  { 𝐼 ,  𝐽 } ) | 
						
							| 58 |  | difss | ⊢ ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∖  { 𝐼 ,  𝐽 } )  ⊆  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) | 
						
							| 59 | 57 58 | eqsstri | ⊢ ( ( dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  )  ∪  { 𝐼 ,  𝐽 } )  ∖  { 𝐼 ,  𝐽 } )  ⊆  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) | 
						
							| 60 | 56 59 | sstrdi | ⊢ ( 𝜑  →  ( dom  ( 𝐹  ∖   I  )  ∖  { 𝐼 ,  𝐽 } )  ⊆  dom  ( ( ( 𝑇 ‘ { 𝐼 ,  𝐽 } )  ∘  𝐹 )  ∖   I  ) ) |