Metamath Proof Explorer


Theorem pmtrcnel

Description: Composing a permutation F with a transposition which results in moving at least one less point. Here the set of points moved by a permutation F is expressed as dom ( F \ _I ) . (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s 𝑆 = ( SymGrp ‘ 𝐷 )
pmtrcnel.t 𝑇 = ( pmTrsp ‘ 𝐷 )
pmtrcnel.b 𝐵 = ( Base ‘ 𝑆 )
pmtrcnel.j 𝐽 = ( 𝐹𝐼 )
pmtrcnel.d ( 𝜑𝐷𝑉 )
pmtrcnel.f ( 𝜑𝐹𝐵 )
pmtrcnel.i ( 𝜑𝐼 ∈ dom ( 𝐹 ∖ I ) )
Assertion pmtrcnel ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )

Proof

Step Hyp Ref Expression
1 pmtrcnel.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 pmtrcnel.t 𝑇 = ( pmTrsp ‘ 𝐷 )
3 pmtrcnel.b 𝐵 = ( Base ‘ 𝑆 )
4 pmtrcnel.j 𝐽 = ( 𝐹𝐼 )
5 pmtrcnel.d ( 𝜑𝐷𝑉 )
6 pmtrcnel.f ( 𝜑𝐹𝐵 )
7 pmtrcnel.i ( 𝜑𝐼 ∈ dom ( 𝐹 ∖ I ) )
8 mvdco dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( 𝐹 ∖ I ) )
9 difss ( 𝐹 ∖ I ) ⊆ 𝐹
10 dmss ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 )
11 9 10 ax-mp dom ( 𝐹 ∖ I ) ⊆ dom 𝐹
12 11 7 sseldi ( 𝜑𝐼 ∈ dom 𝐹 )
13 1 3 symgbasf1o ( 𝐹𝐵𝐹 : 𝐷1-1-onto𝐷 )
14 f1of ( 𝐹 : 𝐷1-1-onto𝐷𝐹 : 𝐷𝐷 )
15 6 13 14 3syl ( 𝜑𝐹 : 𝐷𝐷 )
16 15 fdmd ( 𝜑 → dom 𝐹 = 𝐷 )
17 12 16 eleqtrd ( 𝜑𝐼𝐷 )
18 15 17 ffvelrnd ( 𝜑 → ( 𝐹𝐼 ) ∈ 𝐷 )
19 4 18 eqeltrid ( 𝜑𝐽𝐷 )
20 17 19 prssd ( 𝜑 → { 𝐼 , 𝐽 } ⊆ 𝐷 )
21 15 ffnd ( 𝜑𝐹 Fn 𝐷 )
22 fnelnfp ( ( 𝐹 Fn 𝐷𝐼𝐷 ) → ( 𝐼 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝐼 ) ≠ 𝐼 ) )
23 22 biimpa ( ( ( 𝐹 Fn 𝐷𝐼𝐷 ) ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝐼 ) ≠ 𝐼 )
24 21 17 7 23 syl21anc ( 𝜑 → ( 𝐹𝐼 ) ≠ 𝐼 )
25 24 necomd ( 𝜑𝐼 ≠ ( 𝐹𝐼 ) )
26 4 a1i ( 𝜑𝐽 = ( 𝐹𝐼 ) )
27 25 26 neeqtrrd ( 𝜑𝐼𝐽 )
28 pr2nelem ( ( 𝐼𝐷𝐽𝐷𝐼𝐽 ) → { 𝐼 , 𝐽 } ≈ 2o )
29 17 19 27 28 syl3anc ( 𝜑 → { 𝐼 , 𝐽 } ≈ 2o )
30 2 pmtrmvd ( ( 𝐷𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } )
31 5 20 29 30 syl3anc ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } )
32 6 13 syl ( 𝜑𝐹 : 𝐷1-1-onto𝐷 )
33 f1omvdmvd ( ( 𝐹 : 𝐷1-1-onto𝐷𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
34 32 7 33 syl2anc ( 𝜑 → ( 𝐹𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
35 4 34 eqeltrid ( 𝜑𝐽 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
36 35 eldifad ( 𝜑𝐽 ∈ dom ( 𝐹 ∖ I ) )
37 7 36 prssd ( 𝜑 → { 𝐼 , 𝐽 } ⊆ dom ( 𝐹 ∖ I ) )
38 31 37 eqsstrd ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) )
39 ssequn1 ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ↔ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∖ I ) )
40 38 39 sylib ( 𝜑 → ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∖ I ) )
41 8 40 sseqtrid ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) )
42 41 sselda ( ( 𝜑𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) → 𝑥 ∈ dom ( 𝐹 ∖ I ) )
43 simpr ( ( 𝜑𝑥 = 𝐼 ) → 𝑥 = 𝐼 )
44 eqid ran 𝑇 = ran 𝑇
45 2 44 pmtrrn ( ( 𝐷𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 )
46 5 20 29 45 syl3anc ( 𝜑 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 )
47 2 44 pmtrff1o ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷1-1-onto𝐷 )
48 46 47 syl ( 𝜑 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷1-1-onto𝐷 )
49 f1oco ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷1-1-onto𝐷𝐹 : 𝐷1-1-onto𝐷 ) → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) : 𝐷1-1-onto𝐷 )
50 48 32 49 syl2anc ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) : 𝐷1-1-onto𝐷 )
51 f1ofn ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) : 𝐷1-1-onto𝐷 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 )
52 50 51 syl ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 )
53 15 17 fvco3d ( 𝜑 → ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ ( 𝐹𝐼 ) ) )
54 26 eqcomd ( 𝜑 → ( 𝐹𝐼 ) = 𝐽 )
55 54 fveq2d ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ ( 𝐹𝐼 ) ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ 𝐽 ) )
56 2 pmtrprfv2 ( ( 𝐷𝑉 ∧ ( 𝐼𝐷𝐽𝐷𝐼𝐽 ) ) → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ 𝐽 ) = 𝐼 )
57 5 17 19 27 56 syl13anc ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ 𝐽 ) = 𝐼 )
58 53 55 57 3eqtrd ( 𝜑 → ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) = 𝐼 )
59 nne ( ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ↔ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) = 𝐼 )
60 58 59 sylibr ( 𝜑 → ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 )
61 fnelnfp ( ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷𝐼𝐷 ) → ( 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ↔ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) )
62 61 notbid ( ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷𝐼𝐷 ) → ( ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ↔ ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) )
63 62 biimpar ( ( ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷𝐼𝐷 ) ∧ ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) → ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )
64 52 17 60 63 syl21anc ( 𝜑 → ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )
65 64 adantr ( ( 𝜑𝑥 = 𝐼 ) → ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )
66 43 65 eqneltrd ( ( 𝜑𝑥 = 𝐼 ) → ¬ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )
67 66 ex ( 𝜑 → ( 𝑥 = 𝐼 → ¬ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) )
68 67 necon2ad ( 𝜑 → ( 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) → 𝑥𝐼 ) )
69 68 imp ( ( 𝜑𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) → 𝑥𝐼 )
70 eldifsn ( 𝑥 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ↔ ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ∧ 𝑥𝐼 ) )
71 42 69 70 sylanbrc ( ( 𝜑𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) → 𝑥 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )
72 71 ex ( 𝜑 → ( 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) → 𝑥 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) )
73 72 ssrdv ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) )