| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrcnel.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | pmtrcnel.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 3 |  | pmtrcnel.b |  |-  B = ( Base ` S ) | 
						
							| 4 |  | pmtrcnel.j |  |-  J = ( F ` I ) | 
						
							| 5 |  | pmtrcnel.d |  |-  ( ph -> D e. V ) | 
						
							| 6 |  | pmtrcnel.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | pmtrcnel.i |  |-  ( ph -> I e. dom ( F \ _I ) ) | 
						
							| 8 |  | mvdco |  |-  dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( ( T ` { I , J } ) \ _I ) u. dom ( F \ _I ) ) | 
						
							| 9 |  | difss |  |-  ( F \ _I ) C_ F | 
						
							| 10 |  | dmss |  |-  ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) | 
						
							| 11 | 9 10 | ax-mp |  |-  dom ( F \ _I ) C_ dom F | 
						
							| 12 | 11 7 | sselid |  |-  ( ph -> I e. dom F ) | 
						
							| 13 | 1 3 | symgbasf1o |  |-  ( F e. B -> F : D -1-1-onto-> D ) | 
						
							| 14 |  | f1of |  |-  ( F : D -1-1-onto-> D -> F : D --> D ) | 
						
							| 15 | 6 13 14 | 3syl |  |-  ( ph -> F : D --> D ) | 
						
							| 16 | 15 | fdmd |  |-  ( ph -> dom F = D ) | 
						
							| 17 | 12 16 | eleqtrd |  |-  ( ph -> I e. D ) | 
						
							| 18 | 15 17 | ffvelcdmd |  |-  ( ph -> ( F ` I ) e. D ) | 
						
							| 19 | 4 18 | eqeltrid |  |-  ( ph -> J e. D ) | 
						
							| 20 | 17 19 | prssd |  |-  ( ph -> { I , J } C_ D ) | 
						
							| 21 | 15 | ffnd |  |-  ( ph -> F Fn D ) | 
						
							| 22 |  | fnelnfp |  |-  ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) ) | 
						
							| 23 | 22 | biimpa |  |-  ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I ) | 
						
							| 24 | 21 17 7 23 | syl21anc |  |-  ( ph -> ( F ` I ) =/= I ) | 
						
							| 25 | 24 | necomd |  |-  ( ph -> I =/= ( F ` I ) ) | 
						
							| 26 | 4 | a1i |  |-  ( ph -> J = ( F ` I ) ) | 
						
							| 27 | 25 26 | neeqtrrd |  |-  ( ph -> I =/= J ) | 
						
							| 28 |  | enpr2 |  |-  ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) | 
						
							| 29 | 17 19 27 28 | syl3anc |  |-  ( ph -> { I , J } ~~ 2o ) | 
						
							| 30 | 2 | pmtrmvd |  |-  ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 31 | 5 20 29 30 | syl3anc |  |-  ( ph -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 32 | 6 13 | syl |  |-  ( ph -> F : D -1-1-onto-> D ) | 
						
							| 33 |  | f1omvdmvd |  |-  ( ( F : D -1-1-onto-> D /\ I e. dom ( F \ _I ) ) -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 34 | 32 7 33 | syl2anc |  |-  ( ph -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 35 | 4 34 | eqeltrid |  |-  ( ph -> J e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 36 | 35 | eldifad |  |-  ( ph -> J e. dom ( F \ _I ) ) | 
						
							| 37 | 7 36 | prssd |  |-  ( ph -> { I , J } C_ dom ( F \ _I ) ) | 
						
							| 38 | 31 37 | eqsstrd |  |-  ( ph -> dom ( ( T ` { I , J } ) \ _I ) C_ dom ( F \ _I ) ) | 
						
							| 39 |  | ssequn1 |  |-  ( dom ( ( T ` { I , J } ) \ _I ) C_ dom ( F \ _I ) <-> ( dom ( ( T ` { I , J } ) \ _I ) u. dom ( F \ _I ) ) = dom ( F \ _I ) ) | 
						
							| 40 | 38 39 | sylib |  |-  ( ph -> ( dom ( ( T ` { I , J } ) \ _I ) u. dom ( F \ _I ) ) = dom ( F \ _I ) ) | 
						
							| 41 | 8 40 | sseqtrid |  |-  ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ dom ( F \ _I ) ) | 
						
							| 42 | 41 | sselda |  |-  ( ( ph /\ x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) -> x e. dom ( F \ _I ) ) | 
						
							| 43 |  | simpr |  |-  ( ( ph /\ x = I ) -> x = I ) | 
						
							| 44 |  | eqid |  |-  ran T = ran T | 
						
							| 45 | 2 44 | pmtrrn |  |-  ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( T ` { I , J } ) e. ran T ) | 
						
							| 46 | 5 20 29 45 | syl3anc |  |-  ( ph -> ( T ` { I , J } ) e. ran T ) | 
						
							| 47 | 2 44 | pmtrff1o |  |-  ( ( T ` { I , J } ) e. ran T -> ( T ` { I , J } ) : D -1-1-onto-> D ) | 
						
							| 48 | 46 47 | syl |  |-  ( ph -> ( T ` { I , J } ) : D -1-1-onto-> D ) | 
						
							| 49 |  | f1oco |  |-  ( ( ( T ` { I , J } ) : D -1-1-onto-> D /\ F : D -1-1-onto-> D ) -> ( ( T ` { I , J } ) o. F ) : D -1-1-onto-> D ) | 
						
							| 50 | 48 32 49 | syl2anc |  |-  ( ph -> ( ( T ` { I , J } ) o. F ) : D -1-1-onto-> D ) | 
						
							| 51 |  | f1ofn |  |-  ( ( ( T ` { I , J } ) o. F ) : D -1-1-onto-> D -> ( ( T ` { I , J } ) o. F ) Fn D ) | 
						
							| 52 | 50 51 | syl |  |-  ( ph -> ( ( T ` { I , J } ) o. F ) Fn D ) | 
						
							| 53 | 15 17 | fvco3d |  |-  ( ph -> ( ( ( T ` { I , J } ) o. F ) ` I ) = ( ( T ` { I , J } ) ` ( F ` I ) ) ) | 
						
							| 54 | 26 | eqcomd |  |-  ( ph -> ( F ` I ) = J ) | 
						
							| 55 | 54 | fveq2d |  |-  ( ph -> ( ( T ` { I , J } ) ` ( F ` I ) ) = ( ( T ` { I , J } ) ` J ) ) | 
						
							| 56 | 2 | pmtrprfv2 |  |-  ( ( D e. V /\ ( I e. D /\ J e. D /\ I =/= J ) ) -> ( ( T ` { I , J } ) ` J ) = I ) | 
						
							| 57 | 5 17 19 27 56 | syl13anc |  |-  ( ph -> ( ( T ` { I , J } ) ` J ) = I ) | 
						
							| 58 | 53 55 57 | 3eqtrd |  |-  ( ph -> ( ( ( T ` { I , J } ) o. F ) ` I ) = I ) | 
						
							| 59 |  | nne |  |-  ( -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I <-> ( ( ( T ` { I , J } ) o. F ) ` I ) = I ) | 
						
							| 60 | 58 59 | sylibr |  |-  ( ph -> -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) | 
						
							| 61 |  | fnelnfp |  |-  ( ( ( ( T ` { I , J } ) o. F ) Fn D /\ I e. D ) -> ( I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) <-> ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) ) | 
						
							| 62 | 61 | notbid |  |-  ( ( ( ( T ` { I , J } ) o. F ) Fn D /\ I e. D ) -> ( -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) <-> -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) ) | 
						
							| 63 | 62 | biimpar |  |-  ( ( ( ( ( T ` { I , J } ) o. F ) Fn D /\ I e. D ) /\ -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) -> -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) | 
						
							| 64 | 52 17 60 63 | syl21anc |  |-  ( ph -> -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ x = I ) -> -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) | 
						
							| 66 | 43 65 | eqneltrd |  |-  ( ( ph /\ x = I ) -> -. x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) | 
						
							| 67 | 66 | ex |  |-  ( ph -> ( x = I -> -. x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) ) | 
						
							| 68 | 67 | necon2ad |  |-  ( ph -> ( x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) -> x =/= I ) ) | 
						
							| 69 | 68 | imp |  |-  ( ( ph /\ x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) -> x =/= I ) | 
						
							| 70 |  | eldifsn |  |-  ( x e. ( dom ( F \ _I ) \ { I } ) <-> ( x e. dom ( F \ _I ) /\ x =/= I ) ) | 
						
							| 71 | 42 69 70 | sylanbrc |  |-  ( ( ph /\ x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) -> x e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 72 | 71 | ex |  |-  ( ph -> ( x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) -> x e. ( dom ( F \ _I ) \ { I } ) ) ) | 
						
							| 73 | 72 | ssrdv |  |-  ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( F \ _I ) \ { I } ) ) |