| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrcnel.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | pmtrcnel.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 3 |  | pmtrcnel.b |  |-  B = ( Base ` S ) | 
						
							| 4 |  | pmtrcnel.j |  |-  J = ( F ` I ) | 
						
							| 5 |  | pmtrcnel.d |  |-  ( ph -> D e. V ) | 
						
							| 6 |  | pmtrcnel.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | pmtrcnel.i |  |-  ( ph -> I e. dom ( F \ _I ) ) | 
						
							| 8 |  | mvdco |  |-  dom ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) C_ ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> dom ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) C_ ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) ) | 
						
							| 10 |  | coass |  |-  ( ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) o. F ) = ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) | 
						
							| 11 |  | difss |  |-  ( F \ _I ) C_ F | 
						
							| 12 |  | dmss |  |-  ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) | 
						
							| 13 | 11 12 | ax-mp |  |-  dom ( F \ _I ) C_ dom F | 
						
							| 14 | 13 7 | sselid |  |-  ( ph -> I e. dom F ) | 
						
							| 15 | 1 3 | symgbasf1o |  |-  ( F e. B -> F : D -1-1-onto-> D ) | 
						
							| 16 |  | f1of |  |-  ( F : D -1-1-onto-> D -> F : D --> D ) | 
						
							| 17 | 6 15 16 | 3syl |  |-  ( ph -> F : D --> D ) | 
						
							| 18 | 17 | fdmd |  |-  ( ph -> dom F = D ) | 
						
							| 19 | 14 18 | eleqtrd |  |-  ( ph -> I e. D ) | 
						
							| 20 | 17 19 | ffvelcdmd |  |-  ( ph -> ( F ` I ) e. D ) | 
						
							| 21 | 4 20 | eqeltrid |  |-  ( ph -> J e. D ) | 
						
							| 22 | 19 21 | prssd |  |-  ( ph -> { I , J } C_ D ) | 
						
							| 23 | 17 | ffnd |  |-  ( ph -> F Fn D ) | 
						
							| 24 |  | fnelnfp |  |-  ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) ) | 
						
							| 25 | 24 | biimpa |  |-  ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I ) | 
						
							| 26 | 23 19 7 25 | syl21anc |  |-  ( ph -> ( F ` I ) =/= I ) | 
						
							| 27 | 26 | necomd |  |-  ( ph -> I =/= ( F ` I ) ) | 
						
							| 28 | 4 | a1i |  |-  ( ph -> J = ( F ` I ) ) | 
						
							| 29 | 27 28 | neeqtrrd |  |-  ( ph -> I =/= J ) | 
						
							| 30 |  | enpr2 |  |-  ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) | 
						
							| 31 | 19 21 29 30 | syl3anc |  |-  ( ph -> { I , J } ~~ 2o ) | 
						
							| 32 |  | eqid |  |-  ran T = ran T | 
						
							| 33 | 2 32 | pmtrrn |  |-  ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( T ` { I , J } ) e. ran T ) | 
						
							| 34 | 5 22 31 33 | syl3anc |  |-  ( ph -> ( T ` { I , J } ) e. ran T ) | 
						
							| 35 | 2 32 | pmtrff1o |  |-  ( ( T ` { I , J } ) e. ran T -> ( T ` { I , J } ) : D -1-1-onto-> D ) | 
						
							| 36 |  | f1ococnv1 |  |-  ( ( T ` { I , J } ) : D -1-1-onto-> D -> ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) = ( _I |` D ) ) | 
						
							| 37 | 34 35 36 | 3syl |  |-  ( ph -> ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) = ( _I |` D ) ) | 
						
							| 38 | 37 | coeq1d |  |-  ( ph -> ( ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) o. F ) = ( ( _I |` D ) o. F ) ) | 
						
							| 39 | 10 38 | eqtr3id |  |-  ( ph -> ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) = ( ( _I |` D ) o. F ) ) | 
						
							| 40 |  | fcoi2 |  |-  ( F : D --> D -> ( ( _I |` D ) o. F ) = F ) | 
						
							| 41 | 17 40 | syl |  |-  ( ph -> ( ( _I |` D ) o. F ) = F ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ph -> ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) = F ) | 
						
							| 43 | 42 | difeq1d |  |-  ( ph -> ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) = ( F \ _I ) ) | 
						
							| 44 | 43 | dmeqd |  |-  ( ph -> dom ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) = dom ( F \ _I ) ) | 
						
							| 45 | 2 32 | pmtrfcnv |  |-  ( ( T ` { I , J } ) e. ran T -> `' ( T ` { I , J } ) = ( T ` { I , J } ) ) | 
						
							| 46 | 34 45 | syl |  |-  ( ph -> `' ( T ` { I , J } ) = ( T ` { I , J } ) ) | 
						
							| 47 | 46 | difeq1d |  |-  ( ph -> ( `' ( T ` { I , J } ) \ _I ) = ( ( T ` { I , J } ) \ _I ) ) | 
						
							| 48 | 47 | dmeqd |  |-  ( ph -> dom ( `' ( T ` { I , J } ) \ _I ) = dom ( ( T ` { I , J } ) \ _I ) ) | 
						
							| 49 | 2 | pmtrmvd |  |-  ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 50 | 5 22 31 49 | syl3anc |  |-  ( ph -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 51 | 48 50 | eqtrd |  |-  ( ph -> dom ( `' ( T ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 52 | 51 | uneq1d |  |-  ( ph -> ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) = ( { I , J } u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) ) | 
						
							| 53 |  | uncom |  |-  ( { I , J } u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) = ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) | 
						
							| 54 | 52 53 | eqtrdi |  |-  ( ph -> ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) = ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) ) | 
						
							| 55 | 9 44 54 | 3sstr3d |  |-  ( ph -> dom ( F \ _I ) C_ ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) ) | 
						
							| 56 | 55 | ssdifd |  |-  ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ ( ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) \ { I , J } ) ) | 
						
							| 57 |  | difun2 |  |-  ( ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) \ { I , J } ) = ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) \ { I , J } ) | 
						
							| 58 |  | difss |  |-  ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) | 
						
							| 59 | 57 58 | eqsstri |  |-  ( ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) | 
						
							| 60 | 56 59 | sstrdi |  |-  ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |