Metamath Proof Explorer


Theorem pmtrcnelor

Description: Composing a permutation F with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s
|- S = ( SymGrp ` D )
pmtrcnel.t
|- T = ( pmTrsp ` D )
pmtrcnel.b
|- B = ( Base ` S )
pmtrcnel.j
|- J = ( F ` I )
pmtrcnel.d
|- ( ph -> D e. V )
pmtrcnel.f
|- ( ph -> F e. B )
pmtrcnel.i
|- ( ph -> I e. dom ( F \ _I ) )
pmtrcnel.e
|- E = dom ( F \ _I )
pmtrcnel.a
|- A = dom ( ( ( T ` { I , J } ) o. F ) \ _I )
Assertion pmtrcnelor
|- ( ph -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) )

Proof

Step Hyp Ref Expression
1 pmtrcnel.s
 |-  S = ( SymGrp ` D )
2 pmtrcnel.t
 |-  T = ( pmTrsp ` D )
3 pmtrcnel.b
 |-  B = ( Base ` S )
4 pmtrcnel.j
 |-  J = ( F ` I )
5 pmtrcnel.d
 |-  ( ph -> D e. V )
6 pmtrcnel.f
 |-  ( ph -> F e. B )
7 pmtrcnel.i
 |-  ( ph -> I e. dom ( F \ _I ) )
8 pmtrcnel.e
 |-  E = dom ( F \ _I )
9 pmtrcnel.a
 |-  A = dom ( ( ( T ` { I , J } ) o. F ) \ _I )
10 1 2 3 4 5 6 7 pmtrcnel
 |-  ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( F \ _I ) \ { I } ) )
11 8 difeq1i
 |-  ( E \ { I } ) = ( dom ( F \ _I ) \ { I } )
12 10 9 11 3sstr4g
 |-  ( ph -> A C_ ( E \ { I } ) )
13 12 ssdifd
 |-  ( ph -> ( A \ ( E \ { I , J } ) ) C_ ( ( E \ { I } ) \ ( E \ { I , J } ) ) )
14 difpr
 |-  ( E \ { I , J } ) = ( ( E \ { I } ) \ { J } )
15 14 difeq2i
 |-  ( ( E \ { I } ) \ ( E \ { I , J } ) ) = ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) )
16 1 3 symgbasf1o
 |-  ( F e. B -> F : D -1-1-onto-> D )
17 6 16 syl
 |-  ( ph -> F : D -1-1-onto-> D )
18 f1omvdmvd
 |-  ( ( F : D -1-1-onto-> D /\ I e. dom ( F \ _I ) ) -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) )
19 17 7 18 syl2anc
 |-  ( ph -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) )
20 4 19 eqeltrid
 |-  ( ph -> J e. ( dom ( F \ _I ) \ { I } ) )
21 20 eldifad
 |-  ( ph -> J e. dom ( F \ _I ) )
22 21 8 eleqtrrdi
 |-  ( ph -> J e. E )
23 4 a1i
 |-  ( ph -> J = ( F ` I ) )
24 f1of
 |-  ( F : D -1-1-onto-> D -> F : D --> D )
25 17 24 syl
 |-  ( ph -> F : D --> D )
26 25 ffnd
 |-  ( ph -> F Fn D )
27 difss
 |-  ( F \ _I ) C_ F
28 dmss
 |-  ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F )
29 27 28 ax-mp
 |-  dom ( F \ _I ) C_ dom F
30 29 7 sseldi
 |-  ( ph -> I e. dom F )
31 25 fdmd
 |-  ( ph -> dom F = D )
32 30 31 eleqtrd
 |-  ( ph -> I e. D )
33 fnelnfp
 |-  ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) )
34 33 biimpa
 |-  ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I )
35 26 32 7 34 syl21anc
 |-  ( ph -> ( F ` I ) =/= I )
36 23 35 eqnetrd
 |-  ( ph -> J =/= I )
37 eldifsn
 |-  ( J e. ( E \ { I } ) <-> ( J e. E /\ J =/= I ) )
38 22 36 37 sylanbrc
 |-  ( ph -> J e. ( E \ { I } ) )
39 38 snssd
 |-  ( ph -> { J } C_ ( E \ { I } ) )
40 dfss4
 |-  ( { J } C_ ( E \ { I } ) <-> ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) = { J } )
41 39 40 sylib
 |-  ( ph -> ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) = { J } )
42 15 41 syl5eq
 |-  ( ph -> ( ( E \ { I } ) \ ( E \ { I , J } ) ) = { J } )
43 13 42 sseqtrd
 |-  ( ph -> ( A \ ( E \ { I , J } ) ) C_ { J } )
44 sssn
 |-  ( ( A \ ( E \ { I , J } ) ) C_ { J } <-> ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) )
45 43 44 sylib
 |-  ( ph -> ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) )
46 simpr
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> ( A \ ( E \ { I , J } ) ) = (/) )
47 1 2 3 4 5 6 7 pmtrcnel2
 |-  ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) )
48 8 difeq1i
 |-  ( E \ { I , J } ) = ( dom ( F \ _I ) \ { I , J } )
49 47 48 9 3sstr4g
 |-  ( ph -> ( E \ { I , J } ) C_ A )
50 ssdif0
 |-  ( ( E \ { I , J } ) C_ A <-> ( ( E \ { I , J } ) \ A ) = (/) )
51 49 50 sylib
 |-  ( ph -> ( ( E \ { I , J } ) \ A ) = (/) )
52 51 adantr
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> ( ( E \ { I , J } ) \ A ) = (/) )
53 eqdif
 |-  ( ( ( A \ ( E \ { I , J } ) ) = (/) /\ ( ( E \ { I , J } ) \ A ) = (/) ) -> A = ( E \ { I , J } ) )
54 46 52 53 syl2anc
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> A = ( E \ { I , J } ) )
55 54 ex
 |-  ( ph -> ( ( A \ ( E \ { I , J } ) ) = (/) -> A = ( E \ { I , J } ) ) )
56 12 adantr
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> A C_ ( E \ { I } ) )
57 14 49 eqsstrrid
 |-  ( ph -> ( ( E \ { I } ) \ { J } ) C_ A )
58 57 adantr
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( ( E \ { I } ) \ { J } ) C_ A )
59 ssundif
 |-  ( ( E \ { I } ) C_ ( { J } u. A ) <-> ( ( E \ { I } ) \ { J } ) C_ A )
60 58 59 sylibr
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( E \ { I } ) C_ ( { J } u. A ) )
61 ssidd
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ { J } )
62 simpr
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( A \ ( E \ { I , J } ) ) = { J } )
63 61 62 sseqtrrd
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ ( A \ ( E \ { I , J } ) ) )
64 63 difss2d
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ A )
65 ssequn1
 |-  ( { J } C_ A <-> ( { J } u. A ) = A )
66 64 65 sylib
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( { J } u. A ) = A )
67 60 66 sseqtrd
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( E \ { I } ) C_ A )
68 56 67 eqssd
 |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> A = ( E \ { I } ) )
69 68 ex
 |-  ( ph -> ( ( A \ ( E \ { I , J } ) ) = { J } -> A = ( E \ { I } ) ) )
70 55 69 orim12d
 |-  ( ph -> ( ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) ) )
71 45 70 mpd
 |-  ( ph -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) )