| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrcnel.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | pmtrcnel.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 3 |  | pmtrcnel.b |  |-  B = ( Base ` S ) | 
						
							| 4 |  | pmtrcnel.j |  |-  J = ( F ` I ) | 
						
							| 5 |  | pmtrcnel.d |  |-  ( ph -> D e. V ) | 
						
							| 6 |  | pmtrcnel.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | pmtrcnel.i |  |-  ( ph -> I e. dom ( F \ _I ) ) | 
						
							| 8 |  | pmtrcnel.e |  |-  E = dom ( F \ _I ) | 
						
							| 9 |  | pmtrcnel.a |  |-  A = dom ( ( ( T ` { I , J } ) o. F ) \ _I ) | 
						
							| 10 | 1 2 3 4 5 6 7 | pmtrcnel |  |-  ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 11 | 8 | difeq1i |  |-  ( E \ { I } ) = ( dom ( F \ _I ) \ { I } ) | 
						
							| 12 | 10 9 11 | 3sstr4g |  |-  ( ph -> A C_ ( E \ { I } ) ) | 
						
							| 13 | 12 | ssdifd |  |-  ( ph -> ( A \ ( E \ { I , J } ) ) C_ ( ( E \ { I } ) \ ( E \ { I , J } ) ) ) | 
						
							| 14 |  | difpr |  |-  ( E \ { I , J } ) = ( ( E \ { I } ) \ { J } ) | 
						
							| 15 | 14 | difeq2i |  |-  ( ( E \ { I } ) \ ( E \ { I , J } ) ) = ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) | 
						
							| 16 | 1 3 | symgbasf1o |  |-  ( F e. B -> F : D -1-1-onto-> D ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> F : D -1-1-onto-> D ) | 
						
							| 18 |  | f1omvdmvd |  |-  ( ( F : D -1-1-onto-> D /\ I e. dom ( F \ _I ) ) -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 19 | 17 7 18 | syl2anc |  |-  ( ph -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 20 | 4 19 | eqeltrid |  |-  ( ph -> J e. ( dom ( F \ _I ) \ { I } ) ) | 
						
							| 21 | 20 | eldifad |  |-  ( ph -> J e. dom ( F \ _I ) ) | 
						
							| 22 | 21 8 | eleqtrrdi |  |-  ( ph -> J e. E ) | 
						
							| 23 | 4 | a1i |  |-  ( ph -> J = ( F ` I ) ) | 
						
							| 24 |  | f1of |  |-  ( F : D -1-1-onto-> D -> F : D --> D ) | 
						
							| 25 | 17 24 | syl |  |-  ( ph -> F : D --> D ) | 
						
							| 26 | 25 | ffnd |  |-  ( ph -> F Fn D ) | 
						
							| 27 |  | difss |  |-  ( F \ _I ) C_ F | 
						
							| 28 |  | dmss |  |-  ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) | 
						
							| 29 | 27 28 | ax-mp |  |-  dom ( F \ _I ) C_ dom F | 
						
							| 30 | 29 7 | sselid |  |-  ( ph -> I e. dom F ) | 
						
							| 31 | 25 | fdmd |  |-  ( ph -> dom F = D ) | 
						
							| 32 | 30 31 | eleqtrd |  |-  ( ph -> I e. D ) | 
						
							| 33 |  | fnelnfp |  |-  ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) ) | 
						
							| 34 | 33 | biimpa |  |-  ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I ) | 
						
							| 35 | 26 32 7 34 | syl21anc |  |-  ( ph -> ( F ` I ) =/= I ) | 
						
							| 36 | 23 35 | eqnetrd |  |-  ( ph -> J =/= I ) | 
						
							| 37 |  | eldifsn |  |-  ( J e. ( E \ { I } ) <-> ( J e. E /\ J =/= I ) ) | 
						
							| 38 | 22 36 37 | sylanbrc |  |-  ( ph -> J e. ( E \ { I } ) ) | 
						
							| 39 | 38 | snssd |  |-  ( ph -> { J } C_ ( E \ { I } ) ) | 
						
							| 40 |  | dfss4 |  |-  ( { J } C_ ( E \ { I } ) <-> ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) = { J } ) | 
						
							| 41 | 39 40 | sylib |  |-  ( ph -> ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) = { J } ) | 
						
							| 42 | 15 41 | eqtrid |  |-  ( ph -> ( ( E \ { I } ) \ ( E \ { I , J } ) ) = { J } ) | 
						
							| 43 | 13 42 | sseqtrd |  |-  ( ph -> ( A \ ( E \ { I , J } ) ) C_ { J } ) | 
						
							| 44 |  | sssn |  |-  ( ( A \ ( E \ { I , J } ) ) C_ { J } <-> ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) ) | 
						
							| 45 | 43 44 | sylib |  |-  ( ph -> ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) ) | 
						
							| 46 |  | simpr |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> ( A \ ( E \ { I , J } ) ) = (/) ) | 
						
							| 47 | 1 2 3 4 5 6 7 | pmtrcnel2 |  |-  ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) | 
						
							| 48 | 8 | difeq1i |  |-  ( E \ { I , J } ) = ( dom ( F \ _I ) \ { I , J } ) | 
						
							| 49 | 47 48 9 | 3sstr4g |  |-  ( ph -> ( E \ { I , J } ) C_ A ) | 
						
							| 50 |  | ssdif0 |  |-  ( ( E \ { I , J } ) C_ A <-> ( ( E \ { I , J } ) \ A ) = (/) ) | 
						
							| 51 | 49 50 | sylib |  |-  ( ph -> ( ( E \ { I , J } ) \ A ) = (/) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> ( ( E \ { I , J } ) \ A ) = (/) ) | 
						
							| 53 |  | eqdif |  |-  ( ( ( A \ ( E \ { I , J } ) ) = (/) /\ ( ( E \ { I , J } ) \ A ) = (/) ) -> A = ( E \ { I , J } ) ) | 
						
							| 54 | 46 52 53 | syl2anc |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> A = ( E \ { I , J } ) ) | 
						
							| 55 | 54 | ex |  |-  ( ph -> ( ( A \ ( E \ { I , J } ) ) = (/) -> A = ( E \ { I , J } ) ) ) | 
						
							| 56 | 12 | adantr |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> A C_ ( E \ { I } ) ) | 
						
							| 57 | 14 49 | eqsstrrid |  |-  ( ph -> ( ( E \ { I } ) \ { J } ) C_ A ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( ( E \ { I } ) \ { J } ) C_ A ) | 
						
							| 59 |  | ssundif |  |-  ( ( E \ { I } ) C_ ( { J } u. A ) <-> ( ( E \ { I } ) \ { J } ) C_ A ) | 
						
							| 60 | 58 59 | sylibr |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( E \ { I } ) C_ ( { J } u. A ) ) | 
						
							| 61 |  | ssidd |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ { J } ) | 
						
							| 62 |  | simpr |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( A \ ( E \ { I , J } ) ) = { J } ) | 
						
							| 63 | 61 62 | sseqtrrd |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ ( A \ ( E \ { I , J } ) ) ) | 
						
							| 64 | 63 | difss2d |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ A ) | 
						
							| 65 |  | ssequn1 |  |-  ( { J } C_ A <-> ( { J } u. A ) = A ) | 
						
							| 66 | 64 65 | sylib |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( { J } u. A ) = A ) | 
						
							| 67 | 60 66 | sseqtrd |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( E \ { I } ) C_ A ) | 
						
							| 68 | 56 67 | eqssd |  |-  ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> A = ( E \ { I } ) ) | 
						
							| 69 | 68 | ex |  |-  ( ph -> ( ( A \ ( E \ { I , J } ) ) = { J } -> A = ( E \ { I } ) ) ) | 
						
							| 70 | 55 69 | orim12d |  |-  ( ph -> ( ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) ) ) | 
						
							| 71 | 45 70 | mpd |  |-  ( ph -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) ) |